Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emotion dysregulation and right pars orbitalis constitute a neuropsychological pathway to attention deficit hyperactivity disorder

Abstract

Emotion dysregulation is common in attention deficit hyperactivity disorder (ADHD), which is known to be clinically heterogeneous. However, it remains unclear whether emotion dysregulation represents a neuropsychological pathway to ADHD. Here, using a large population-based cohort (n = 6,053), we show that emotion dysregulation was associated with ADHD symptoms (partial eta2 = 0.21) and this persisted after controlling for the cognitive and motivational deficits. Emotion dysregulation mediated the association between smaller surface area of the right pars orbitalis and greater ADHD symptoms at 1-year follow-up, indicating an emotion pathway for ADHD. This pathway was associated with immune responses by both transcriptomic analyses and white blood cell markers. In an independent clinical sample for ADHD (n = 672), the emotion pathway improved the case/control classification accuracy. These findings suggest that emotion dysregulation is a core symptom and route to ADHD, which may not respond to the current pharmacological treatments for ADHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Significant contributions of emotion dysregulation to ADHD.
Fig. 2: Relationships among brain, three pathway assessments, immune pathway, and ADHD.
Fig. 3: Trajectory classification accuracy and clinical validations.

Similar content being viewed by others

Data availability

Data are publicly released on an annual basis through the NIMH Data Archive (NDA, https://nda.nih.gov/abcd). The ABCD Study data are openly available to qualified researchers for free. Access can be requested at https://nda.nih.gov/abcd/request-access. The ABCD data used in this report came from Data Release 5.0 (https://doi.org/10.15154/8873-zj65). An NDA study has been created for the data used in this report under the digital object identifier https://doi.org/10.15154/nfsk-9n15. ADHD-200 data are available from a dedicated database. Summary statistics of GWAS for ADHD is publicly available and can be downloaded from https://www.med.unc.edu/pgc/download-results/adhd/. The transcriptomic data were downloaded from the Allen Human Brain Atlas (AHBA, https://human.brain-map.org/). The multi-tissue cell-type markers data can be downloaded from the Cell Marker2.0 database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/index.html). Source data are provided with this paper.

Code availability

Code for the replication of analyses conducted in the manuscript can be retrieved at https://github.com/DanTouHaHa/ER-in-ADHD.

References

  1. Willcutt, E. G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9, 490–499 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sonuga-Barke, E. J. S. et al. Annual research review: perspectives on progress in ADHD science—from characterization to cause. J. Child Psychol. Psychiatry 64, 506–532 (2023).

    Article  PubMed  Google Scholar 

  3. Norman, L. J. et al. Longitudinal trajectories of childhood and adolescent attention deficit hyperactivity disorder diagnoses in three cohorts. EClinicalMedicine 60, 102021 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sonuga-Barke, E. J. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci. Biobehav. Rev. 27, 593–604 (2003).

    Article  PubMed  Google Scholar 

  5. Shen, C. et al. Neural correlates of the dual-pathway model for ADHD in adolescents. Am. J. Psychiatry 177, 844–854 (2020).

    Article  PubMed  Google Scholar 

  6. Stevens, M. C., Pearlson, G. D., Calhoun, V. D. & Bessette, K. L. Functional neuroimaging evidence for distinct neurobiological pathways in attention-deficit/hyperactivity disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 675–685 (2018).

    PubMed  Google Scholar 

  7. Nigg, J. T., Willcutt, E. G., Doyle, A. E. & Sonuga-Barke, E. J. Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biol. Psychiatry 57, 1224–1230 (2005).

    Article  PubMed  Google Scholar 

  8. van Lieshout, M., Luman, M., Buitelaar, J., Rommelse, N. N. & Oosterlaan, J. Does neurocognitive functioning predict future or persistence of ADHD? A systematic review. Clin. Psychol. Rev. 33, 539–560 (2013).

    Article  PubMed  Google Scholar 

  9. Nigg, J. T., Karalunas, S. L., Feczko, E. & Fair, D. A. Toward a revised nosology for attention-deficit/hyperactivity disorder heterogeneity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 726–737 (2020).

    PubMed  PubMed Central  Google Scholar 

  10. Shaw, P., Stringaris, A., Nigg, J. & Leibenluft, E. Emotion dysregulation in attention deficit hyperactivity disorder. Am. J. Psychiatry 171, 276–293 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nigg, J. T., Goldsmith, H. H. & Sachek, J. Temperament and attention deficit hyperactivity disorder: the development of a multiple pathway model. J. Clin. Child Adolesc. Psychol. 33, 42–53 (2004).

    Article  PubMed  Google Scholar 

  12. Braver, T. S. et al. Mechanisms of motivation–cognition interaction: challenges and opportunities. Cogn. Affect. Behav. Neurosci. 14, 443–472 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Beheshti, A., Chavanon, M. L. & Christiansen, H. Emotion dysregulation in adults with attention deficit hyperactivity disorder: a meta-analysis. BMC Psychiatry 20, 120 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Graziano, P. A. & Garcia, A. Attention-deficit hyperactivity disorder and children’s emotion dysregulation: a meta-analysis. Clin. Psychol. Rev. 46, 106–123 (2016).

    Article  PubMed  Google Scholar 

  15. Pozzi, M. et al. Adverse drug events related to mood and emotion in paediatric patients treated for ADHD: a meta-analysis. J. Affect. Disorders 238, 161–178 (2018).

    Article  PubMed  Google Scholar 

  16. Luo, Y., Weibman, D., Halperin, J. M. & Li, X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci. 13, 42 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Christiansen, H., Hirsch, O., Albrecht, B. & Chavanon, M. L. Attention-deficit/hyperactivity disorder (ADHD) and emotion regulation over the life span. Curr. Psychiatry Rep. 21, 17 (2019).

    Article  PubMed  Google Scholar 

  18. Ahmed, S. P., Bittencourt-Hewitt, A. & Sebastian, C. L. Neurocognitive bases of emotion regulation development in adolescence. Dev. Cogn. Neurosci. 15, 11–25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rosch, K. S. & Hawk, L. W. Jr. The effects of performance-based rewards on neurophysiological correlates of stimulus, error, and feedback processing in children with ADHD. Psychophysiology 50, 1157–1173 (2013).

    Article  PubMed  Google Scholar 

  20. Frank, D. W. et al. Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neurosci. Biobehav. Rev. 45, 202–211 (2014).

    Article  PubMed  Google Scholar 

  21. Samea, F. et al. Brain alterations in children/adolescents with ADHD revisited: a neuroimaging meta-analysis of 96 structural and functional studies. Neurosci. Biobehav. Rev. 100, 1–8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barch, D. M. et al. Demographic and mental health assessments in the adolescent brain and cognitive development study: updates and age-related trajectories. Dev. Cogn. Neurosci. 52, 101031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Achenbach, T., McConaughy, S., Ivanova, M. & Rescorla, L. Manual for the ASEBA Brief Problem Monitor™ (BPM) (ASEBA, 2011).

  24. Bernanke, J. et al. Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: a cross-sectional US population-based study. Lancet Psychiatry 9, 222–231 (2022).

    Article  PubMed  Google Scholar 

  25. Chen, D. et al. Brain signatures during reward anticipation predict persistent attention-deficit/hyperactivity disorder symptoms. J. Am. Acad. Child. Adoles. Psychiatry 61, 1050–1061 (2022).

    Article  Google Scholar 

  26. Chen, J. W. et al. Best practice guidelines for propensity score methods in medical research: consideration on theory, implementation, and reporting. A review. Arthroscopy 38, 632–642 (2022).

    Article  PubMed  Google Scholar 

  27. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Viering, T. et al. Emotion dysregulation and integration of emotion-related brain networks affect intraindividual change in ADHD severity throughout late adolescence. NeuroImage 245, 118729 (2021).

    Article  PubMed  Google Scholar 

  29. Sjöwall, D., Roth, L., Lindqvist, S. & Thorell, L. B. Multiple deficits in ADHD: executive dysfunction, delay aversion, reaction time variability, and emotional deficits. J. Child Psychol. Psychiatry 54, 619–627 (2013).

    Article  PubMed  Google Scholar 

  30. Castellanos, F. X., Sonuga-Barke, E. J. S., Milham, M. P. & Tannock, R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 10, 117–123 (2006).

    Article  PubMed  Google Scholar 

  31. Barkley, R. A. & Fischer, M. The unique contribution of emotional impulsiveness to impairment in major life activities in hyperactive children as adults. J. Am. Acad. Child Adolesc. Psychiatry 49, 503–513 (2010).

    PubMed  Google Scholar 

  32. Mitul, A. M. et al. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J. Neurosci. 20, RC65 (2000).

    Article  Google Scholar 

  33. Volkow, N. D. et al. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J. Neurosci. 32, 841–849 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Suzer Gamli, I. & Tahiroglu, A. Y. Six months methylphenidate treatment improves emotion dysregulation in adolescents with attention deficit/hyperactivity disorder: a prospective study. Neuropsychiatric Dis. Treat. 14, 1329–1337 (2018).

    Article  Google Scholar 

  35. Kanarik, M., Grimm, O., Mota, N. R., Reif, A. & Harro, J. ADHD co-morbidities: a review of implication of gene × environment effects with dopamine-related genes. Neurosci. Biobehav. Rev. 139, 104757 (2022).

    Article  PubMed  Google Scholar 

  36. Cisler, J. M. & Olatunji, B. O. Emotion regulation and anxiety disorders. Curr. Psychiatry Rep. 14, 182–187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Petruso, F., Giff, A. E., Milano, B. A., De Rossi, M. M. & Saccaro, L. F. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal. 7, NS20220077 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. D’Acquisto, F. Affective immunology: where emotions and the immune response converge. Dialogues Clin. Neurosci. 19, 9–19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moriarity, D. P. et al. A systematic review of associations between emotion regulation characteristics and inflammation. Neurosci. Biobehav. Rev. 150, 105162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morrens, M. et al. The relationship between immune and cognitive dysfunction in mood and psychotic disorder: a systematic review and a meta-analysis. Mol. Psychiatry 27, 3237–3246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eddy, P., Wertheim, E. H., Hale, M. W. & Wright, B. J. A systematic review and revised meta-analysis of the effort–reward imbalance model of workplace stress and hypothalamic–pituitary–adrenal axis measures of stress. Psychosom. Med. 85, 450–460 (2023).

    Article  PubMed  Google Scholar 

  42. Skott, E. et al. Effects of a synbiotic on symptoms, and daily functioning in attention deficit hyperactivity disorder—a double-blind randomized controlled trial. Brain Behav. Immunity 89, 9–19 (2020).

    Article  Google Scholar 

  43. De Picker, L. J. et al. TSPO PET brain inflammation imaging: a transdiagnostic systematic review and meta-analysis of 156 case-control studies. Brain Behav. Immun. 113, 415–431 (2023).

    Article  PubMed  Google Scholar 

  44. Rubia, K. ‘Cool’ inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus ‘hot’ ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review. Biol. Psychiatry 69, e69–e87 (2011).

    Article  PubMed  Google Scholar 

  45. Belyk, M., Brown, S., Lim, J. & Kotz, S. A. Convergence of semantics and emotional expression within the IFG pars orbitalis. Neuroimage 156, 240–248 (2017).

    Article  PubMed  Google Scholar 

  46. Vaidya, C. J. et al. Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am. J. Psychiatry 162, 1605–1613 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Posner, J. et al. Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder. Psychiatry Res. Neuroimaging 213, 24–30 (2013).

    Article  Google Scholar 

  48. Ochsner, K. N. & Gross, J. J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Article  PubMed  Google Scholar 

  49. Achenbach, T. M. Achenbach System of Empirically Based Assessment (ASEBA). in Encyclopedia of Clinical Neuropsychology 1–7 (Springer, 2017).

  50. Achenbach, T. & Rescorla, L. Manual for the ASEBA School-Age Forms and Profiles: An Integrated System of Multi-informant Assessment (ASEBA, 2001).

  51. Nakamura, B. J., Ebesutani, C., Bernstein, A. & Chorpita, B. F. A psychometric analysis of the Child Behavior Checklist DSM-Oriented Scales. J. Psychopathol. Behav. Assess. 31, 178–189 (2009).

    Article  Google Scholar 

  52. Van Meter, A. R. et al. The stability and persistence of symptoms in childhood-onset ADHD. Eur. Child Adolesc. Psychiatry 33, 1163–1170 (2023).

    Article  PubMed  Google Scholar 

  53. Bleck, T. P., Nowinski, C. J., Gershon, R. & Koroshetz, W. J. What is the NIH Toolbox, and what will it mean to neurology? Neurology 80, 874–875 (2013).

    Article  PubMed  Google Scholar 

  54. Acker, W. A computerized approach to psychological screening—the Bexley-Maudsley Automated Psychological Screening and the Bexley-Maudsley Category Sorting Test. Int. J. Man Mach. Stud. 17, 361–369 (1982).

    Article  Google Scholar 

  55. Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol. 67, 319–333 (1994).

    Article  Google Scholar 

  56. Serrano-Ibáñez, E. R., Ramírez-Maestre, C., Esteve, R. & López-Martínez, A. E. The behavioural inhibition system, behavioural activation system and experiential avoidance as explanatory variables of comorbid chronic pain and posttraumatic stress symptoms. Eur. J. Psychotraumatol. 10, 1581013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Weiss, N. H., Gratz, K. L. & Lavender, J. M. Factor structure and initial validation of a multidimensional measure of difficulties in the regulation of positive emotions: the DERS-Positive. Behav. Modif. 39, 431–453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bunford, N. et al. The Difficulties in Emotion Regulation Scale-Parent Report: a psychometric investigation examining adolescents with and without ADHD. Assessment 27, 921–940 (2020).

    Article  PubMed  Google Scholar 

  59. Gratz, K. L. & Roemer, L. Multidimensional Assessment of Emotion Regulation and Dysregulation: development, factor structure, and initial validation of the Difficulties in Emotion Regulation Scale. J. Psychopathol. Behav. Assess. 26, 41–54 (2004).

    Article  Google Scholar 

  60. Guzmán-González, M., Mendoza-Llanos, R., Garrido-Rojas, L., Barrientos, J. & Urzúa, A. Cut-off points of the Difficulties in Emotion Regulation Scale for the Chilean population. Revista Medica de Chile 148, 644–652 (2020).

    Article  PubMed  Google Scholar 

  61. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  62. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  63. Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).

    Article  PubMed  Google Scholar 

  64. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Arnatkevic̆iūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).

    Article  PubMed  Google Scholar 

  67. Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773–778 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  69. Scutari, M. Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. https://doi.org/10.18637/jss.v035.i03 (2010).

  70. Ho, D., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. https://doi.org/10.18637/jss.v042.i08 (2011).

  71. Hoogman, M. et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am. J. Psychiatry 176, 531–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bao, H.-W.-S. bruceR: broadly useful convenient and efficient R functions. CRAN https://CRAN.R-project.org/package=bruceR (2021).

  73. Shen, C. et al. What is the link between attention-deficit/hyperactivity disorder and sleep disturbance? A multimodal examination of longitudinal relationships and brain structure using large-scale population-based cohorts. Biol. Psychiatry 88, 459–469 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhao, C.-l et al. Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain. Cogn. Neurodyn. https://doi.org/10.1007/s11571-023-09954-y (2023).

    Article  PubMed  Google Scholar 

  75. Hu, C. et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51, D870–D876 (2023).

    Article  PubMed  Google Scholar 

  76. Kase, B. E. et al. Longitudinal associations between symptoms of ADHD and BMI from late childhood to early adulthood. Pediatrics 147, e2020036657 (2021).

    Article  PubMed  Google Scholar 

  77. Pai, L.-F. et al. New insights into precocious puberty and ADHD: a nationwide cohort study. Pediatr. Res. 92, 1787–1794 (2022).

    Article  PubMed  Google Scholar 

  78. Fernandes, J., Ferreira-Santos, F., Miller, K. & Torres, S. Emotional processing in obesity: a systematic review and exploratory meta-analysis. Obesity Rev. 19, 111–120 (2018).

    Article  Google Scholar 

  79. Bailen, N. H., Green, L. M. & Thompson, R. J. Understanding emotion in adolescents: a review of emotional frequency, intensity, instability, and clarity. Emot. Rev. 11, 63–73 (2019).

    Article  Google Scholar 

  80. Kuhn, M. Building predictive models in R using the caret package. J. Stati. Softw. https://doi.org/10.18637/jss.v028.i05 (2008).

Download references

Acknowledgments

This study was partially supported by grants from the National Key Research and Development Program of China (no. 2023YFE0109700) (Q.L.), the National Natural Science Foundation of China (No. 82272079) (Q.L.), the Program of Shanghai Academic Research Leader (no. 23XD1423400) (Q.L.), and the Shanghai Municipal Science and Technology Major Project (nos. 2018SHZDZX01 and 2021SHZDZX0103) (Q.L.). Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data repository grows and changes over time. The ABCD data used in this report came from Data Release 5.0 (https://doi.org/10.15154/8873-zj65).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. proposed and designed the study. W.H. and Q.L. analyzed the data. W.H. and Q.L. drafted the manuscript. B.J.S., C.L., Y.Y., and R.A.I.B. edited the manuscript. All authors contributed to the interpretation of results. All authors contributed to the visualization. All authors read and approved the manuscript.

Corresponding author

Correspondence to Qiang Luo.

Ethics declarations

Competing interests

R.A.I.B. is a founder and director of Centile Biosciences Inc. This role did not influence his contribution to this project.

Peer review

Peer review information

Nature Mental Health thanks Sha Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–18, Methods and Results.

Reporting Summary

Supplementary Data 1

Biological processes and cell types associated with three neuropsychological pathways.

Supplementary Data 2

Statistical data for Supplementary Figs. 1–9.

Source data

Source Data Figs. 1–3

Statistical data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Sahakian, B.J., Langley, C. et al. Emotion dysregulation and right pars orbitalis constitute a neuropsychological pathway to attention deficit hyperactivity disorder. Nat. Mental Health (2024). https://doi.org/10.1038/s44220-024-00251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44220-024-00251-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing