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Testing the predictive power of reverse
screening to infer drug targets, with the
help of machine learning

Check for updates

Antoine Daina 1 & Vincent Zoete1,2

Estimating protein targets of compoundsbasedon the similarity principle—similarmolecules are likely
to show comparable bioactivity—is a long-standing strategy in drug research. Having previously
quantified this principle, we present here a large-scale evaluation of its predictive power for inferring
macromolecular targets by reverse screening an unprecedented vast external test set of more than
300,000 active small molecules against another bioactivity set of more than 500,000 compounds. We
show that machine-learning can predict the correct targets, with the highest probability among 2069
proteins, for more than 51% of the external molecules. The strong enrichment thus obtained
demonstrates its usefulness in supporting phenotypic screens, polypharmacology, or repurposing.
Moreover, we quantified the impact of the bioactivity knowledge available for proteins in terms of
number and diversity of actives. Finally, we advise that developers of such approaches follow an
application-oriented benchmarking strategy and use large, high-quality, non-overlapping datasets as
provided here.

The importance of predicting primary and secondary macromolecular
targets of therapeutic compoundswas clearly demonstrated by retrospective
analyses defining the number of known protein targets for drugs1,2.
Underlying concepts, such as polypharmacology, specificity or repurposing,
are considered throughout any modern drug R&D project. This also con-
cerns the initial stages of discovery where the number of molecules to
evaluate ismassive, but thephysical samples are scarce, prompting the use of
fast yet robust bioinformatic models.

Whereas earlier studies about target and bioactivity prediction were
conducted3–6, the game-changing work of Shoichet and colleagues7–10 on
ligand-based reverse screening was accompanied by a remarkable experi-
mental effort to confirm about half of the predicted off-target effects of 656
drugs among 73 possible proteins. Since then, a plethora of computational
tools followed by expert opinions were released11–13. This research area is no
exception to the growing penchant for unsupervisedmethods calling for due
warnings about black-box and overfitting pitfalls. The scientific output has
focused on meticulously comparing machine-learning algorithms with
sophisticated stratification of the bioactivity knowledge1,14–18. The actual
predictive ability has been strikingly overlooked, probably due to the diffi-
culty of constructing appropriate external test sets.

To address this methodological shortcoming, we propose the first
assessment of the predictive power of ligand-based reverse screening for the

estimation of small molecule drug targets with a vast, diverse, curated,
external bioactivity dataset.

Results and discussion
Training
The target prediction engine evaluated here is a logistic model combining
shape and chemical similarity19 and trained on data curated from the
ChEMBL database20. This method relies on the Similarity Principle, which
was quantified by us previously for several molecular descriptors (including
ES5D vectors and FP2 fingerprints, see below)21. The robustness of this
machine-learning model was scrupulously confirmed by cross-validation
several times19 and was recognized by peers as one of the most carefully
statistically validated methods in the field15.

Here, ChEMBL was mined to obtain the training data comprising
501,959 compounds showing experimental bioactivity against 3669 protein
targets. (seeMethods, Data extraction, Supplementary Fig. 1a).

For each of the 501,959 compounds, the tridimensional shape and
projection of physicochemical properties were translated into twenty 18-
dimension float vectors following the ElectroShape approach (ES5D
vectors)22. As well, the chemical structure of each compound was encoded as
one1024-bit binary vector (FP2fingerprints) (SupplementaryFig. 1b)23. Pair-
wise comparisons between all compounds produced the 3D-Score matrix
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withManhattan-based similarity values of ES5D vectors (for the closest of 20
conformations), and the 2D-Score matrix with Tanimoto coefficients of FP2
fingerprints (seeMethods, Chemoinformatics, Supplementary Fig. 1c).

To address the variation in contributions of these descriptors in the
regression with molecular size19, 51 subsets were created, each corre-
sponding to a givennumberof heavy atoms in thefirst (“query”)molecule of
every pair (see Methods, training methodology). For each subset, a binary
logisticmodelwas trained to find the best constantC and coefficients (c1, c2)
for the regression features (3D-Score and 2D-Score) (Supplementary
Fig. 1d). To reduce noise from training, the final coefficients for calculating
the probability of predictions were obtained by fitting theC, c1 and c2 curves
via a third-degree polynomial function (Supplementary Fig. 2a).

The high internal classification ability measured by 10-fold cross-
validated Matthews correlation coefficient for each 51 size-related subset
(MCCcv, see Methods, training methodology, Supplementary Fig. 2b, Sup-
plementary Table 1) confirmed the robustness of the approach as defined
several time19,24,25. The lowerMCC, precision and recall for the lesser heavy
atom classes have already been observed and related to the poorer protein
specificity of very small ligands26 and partly to less populated classes (Sup-
plementary Fig. 2c).

External validation
The output of the regression model is an unbiased computed probability.
Accordingly, we established a strategy to assess the predictive ability that

reflects the applicative scope, i.e. reverse screening to predict the most
probable protein targets for asmanyactive compounds as possible. The rank
of experimental targets in a list of predicted proteins ordered by calculated
probability was recorded. Noteworthy, for this reverse screening evaluation
exercise, the calculated probability values are only used as a scoring scale to
rank the predicted targets.

Themining of Reaxys® enabled the construction of anunprecedentedly
vast test set27. Applying filters comparable to those used for the training set,
we retrieved high-quality data for 364,201 small molecules, not included in
the ChEMBL training set, yet active on 1180 human proteins shared with
ChEMBL (SeeMethods, Data extraction).

This external test set was reverse-screened against the fraction of the
ChEMBL set active on human proteins (i.e. the screening set, see
Methods, Testing strategy). The ES5D vectors and FP2 fingerprints of
each 364,201 test compound (Fig. 1a) were compared to all 405,544
compounds of the screening set to find themost similar known actives on
every 2069 ChEMBL human targets in terms of shape and chemical
structure (Fig. 1b). For each protein target, the highest Manhattan-based
similarity value and Tanimoto coefficient were inputted in the logistic
equation as 3D-Score and 2D-Score features, respectively (Fig. 1c). By
using the coefficients (c1, c2 and C) corresponding to the number of heavy
atoms in the test compound, the probability was calculated for all 2069
proteins to rank them from most probable to least probable tar-
gets (Fig. 1d).

Fig. 1 | Predictive ability evaluationmethod on large external test set. aBioactivity
data extraction from Reaxys (version 03.2019) applying filtering criteria: molecules
between 5 and 80 heavy atoms, active at 10 µMor less as IC50, EC50, Ki, KD, Kic or Km

in a binding assay on a well-defined protein or protein complex shared with the
ChEMBL 25 training set. 364,201 unique compounds active on 1180 human protein
targets retrieved as 2-dimensional SDF submitted to removal of counter ions or
solvents, kekulization and neutralization to calculate path-based binary molecular
fingerprints up to 7 atoms (FP2 fingerprints). 20 all-atom conformers generation to
calculate 20 shape vectors of 18 dimensions (xn;p), with xn;p the average distance to
the order n between all atoms and the pth of six centroids (ES5D vectors). b Reverse-
screening of each Reaxys test compound against the ChEMBL screening set

organized by known actives per target, in order to find the actives most similar in 3D
and in 2D for each of the 2069 screened targets (can be the same or different
molecules). c The highest computed Manhattan similarity value and Tanimoto
coefficient are inputted in the logistic equation as 3D-Score and 2D-Score features,
respectively. The probability of a given protein to be targeted by the “query” com-
pound is calculated usingwith thefinal coefficients (c1, c2 andC) obtained by training
and curve-smoothing as a function of the number of heavy atoms in the query
molecule (Supplementary Fig. 1 and Supplementary Fig. 2). d The actual output for
assessing the predictive ability (Fig. 3) is the list of the 2069 screened proteins ranked
from the highest to the lowest calculated probability for each test compound for
which the experimental target(s) are known.
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Physicochemical and chemical spaces
To ensure that the applicability domain of the model is respected, and that
the validation exercise matches with the “real-life” application—finding
probable targets for medicinal-chemistry-oriented bioactive small mole-
cular compounds—the respective physicochemical spaces covered by the
training set and the test set were compared.

The distributions of sevenmolecular and physicochemical descriptors
for both sets are depicted in Supplementary Fig. 3, as a function of the
number ofmolecules, and as per percentage of total set (seePhysicochemical
description in theMethods section). These indicate the clear overlap of the
two molecular sets in every descriptor dimension. More precisely and as
shown in Table 1, the distributions of lipophilicity, saturation, flexibility,
apparent polarity, hydrogen-bonding capacity and size are very similar
between the training set and the test set. This is quantified by very negative
Z-factors28 for n-octanol/water partition coefficient (WLOGP), the fraction
of sp3 carbon (fCsp3), the number of rotatable bonds, the polar surface area
(TPSA), and the number of hydrogen-bond acceptors (HBA) and donors
(HBD), aswell as formolecularweight (MW). This confirms that the test set
falls in the applicability domain of the predictive model with very com-
parable physicochemical spaces covered by both extensive molecular sets.

Beside physicochemical space, the chemical diversity between the two
sets wasmeasured by two different types ofmolecular scaffolds (see Scaffold
computation in the Methods section). According to the Murcko wire-like
frameworks29, the 501,959 training molecules are described by 25,046
scaffolds, and the364,201 testmoleculesby21,820 scaffolds.Asper themore
abstract Oprea approach30, the training molecules are described by
38,896 scaffolds, and the test molecules by 33,754 scaffolds. Relatively and
for bothdefinitions, the test set ismore chemically diversewith an average of

16.7 and 10.8 molecules per Murcko and Oprea scaffolds, respectively,
compared to 20.0 and 12.9 molecules per Murcko and Oprea scaffolds for
the training set.

Moreover, the common scaffolds between both sets are 10,317Murcko
scaffolds (41.2% of the training set and 47.3% of the test set, Supplementary
Fig. 4a) and 15,004 Oprea scaffolds (38.6% of the training set and 44.5% for
the test set, Supplementary Fig. 4b). With less than half of both sets over-
lapping according to two different molecular scaffold definitions, the
training and the test sets can be considered as chemically distinct from
each other.

Furthermore, by considering the scaffolds from the test set that do not
describe any training compound, 11,503 unique distinct Murcko scaffolds
can be extracted from 48,001 test molecules (13.2%), and 18,750 unique
distinct Oprea scaffolds from 67,554 test molecules (18.5%). Finally, 32,748
test molecules (termed as the Distinct test set and representing 9.0% of the
entire test set, see Fig. 2a) can be considered strictly chemically distinct from
the training set, since they are described by Murcko and Oprea scaffolds,
which do not describe any training compound. This indicates further the
relevance of building a vast external test set from a distinct source. Even
when applying strict criteria formolecular diversity (unrelated to themodel
itself, as here, two orthogonal definitions of scaffolds), the predictive ability
assessment can be also performed on numerous external compounds
objectively defined as chemically distinct from the training data (see section
Predictive ability).

Noteworthy, the bioactivity data at the root of the external test set were
severely constrained inmany dimensions. Themost drastic reductions took
place in thebioactivity spectrumand the chemical space.The former regards
the selection of targets shared with the training set only (1180 among the
more than 14,000 human proteins targeted by at least one small molecular
compound available in Reaxys version 03.2019) and the latter was the
selection of external actives not part of the training set (364,201 compounds
among the almost 7million small molecules with bioactivity data on a well-
defined target). Despite these radical reduction measures, the external test
set remains large as well as chemically diverse and distinct from the training
molecules.

These chemical and physicochemical examinations demonstrate the
relevance of the evaluation exercise, core of this study, with an external test
set that is not only large, chemically diverse anddistinct from the training set
but also that falls in the applicability domain of the logisticmodel according
to seven molecular and physicochemical properties. The predictive ability
assessment strategy proposed reproduces the real objective of the reverse
screeningmethodology, i.e. finding the probable protein targets of bioactive
smallmolecular compounds, in the context of drug discovery andmedicinal
chemistry.

Table 1 | Distribution of physicochemical properties among
training and test molecules

Descriptor Training set
(n = 501,959)

Test set
(n = 364,201)

Z-factor

Average Std dev Average Std dev

WLOGP 4.16 2.029 3.74 1.933 −27.36

fCsp3 0.33 0.185 0.34 0.170 −70.99

# rot. bonds 7.08 4.280 7.66 3.978 −41.60

TPSA [A2] 93.83 46.259 97.72 41.506 −66.68

HBA 5.30 2.408 5.81 2.352 −26.98

HBD 1.82 1.568 1.81 1.448 −603.40

MW [g/mol] 430.91 118.385 465.72 107.227 −18.45

Fig. 2 | The Distinct test set and its impact on reverse screening success rate.
aNumber of compounds in the test set described by distinct scaffolds not extracted
from any training molecule. The Distinct test set contains 32,748 molecules (9% of

the entire test set) described by Murcko29 and Oprea30 scaffolds not represented in
the training set. b Success in predicting one experimentally validated target for all
32,748 distinct test compounds compared to the entire test set (values in Fig. 3a).
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Predictive ability
The global predictive ability canbe quantifiedby the success in retrieving, by
reverse-screening, one of the experimental targets of bioactive query
molecules among the predictedmost probable ones. Remarkably, for 51.2%
of the test compounds, the predicted protein with the highest probability
was indeed a validated target (Fig. 3a). This predictive capacity is con-
siderably higher than the 0.1% expected from a random ranking. The suc-
cess becomes 72.9% within the predicted 15 most probable proteins, as
typically displayed in Web interfaces24,25. The success rate versus rank pla-
teaus, reaching 85.9% at rank #100 (Supplementary Fig. 5).

The predictive ability is essentially constant along the classes of heavy
atoms in the test compounds (Fig. 3b), with a noisier signal for smaller
molecules and a slight increase for largermolecules. Themost stable signal is
obtained for molecules containing between 20 and 40 heavy atoms, which
are the most populated classes (see Supplementary Fig. 2c and Supple-
mentary Fig. 6 for training set and test set, respectively) and those corre-
sponding to drugs and druglike molecules31.

The relationship between the performance of ligand-based reverse
screening and the chemical novelty of submitted compounds has long been
published19. However, the size, diversity, and chemical nature of the here-
built test set justify a renewed evaluation with many more test molecules
objectively chemically distinct from the training set. According to the che-
mical diversity study described in section Physicochemical and chemical
spaces, 9% of the entire test set involves compounds described bymolecular

scaffolds that cannot be extracted fromanymolecule in the training set, with
respect to both theMurckoand theOpreadefinitions (Fig. 2a).The large size
of the whole test set made it possible to build a so-called “distinct test set”
containing as many as 32,748 molecules. Predicting protein targets of these
compounds, chemically strictly unrelated to the training set (nor the
screening set, which is a subset of the training set), increases a priori the
difficulty of the exercise.Expectedly as shown inFig. 2b, the success is less for
the “distinct test set” than for the entire test set.Nevertheless, the success rate
is still very acceptablewith a correct target predicted formore thanone third
(36.2%) of the distinctmolecules at highest probability, formore thanhalf of
the distinct molecules (51.8%) at rank #5, for more than two-third of the
distinct molecules (67.0%) at rank #15, finally reaching 80.0% at rank #100.
Gratifyingly, this further confirms the robustness of the prediction gener-
ated by the method, even outside of the chemical space covered by the
training data. This demonstrates the usefulness and relevance of target
prediction by ligand-based reverse-screening for new compounds close to
the state-of-the-art in me-too projects, but also for novel chemotypes in
more prospective drug discovery.

Considering only test compoundswith exactly one experimental target
reported in Reaxys broadens the scope of analysis while retaining a vast
external test set (300,978 compounds) (Fig. 3c). Retrieving the correct single
target is a more difficult exercise than finding one among several, however
the predictive ability remains very high with a success rate of 49.7% at
highest probability. Moreover 70.5% and 83.4% of success at rank #15 and

Fig. 3 | Global predictive ability of ligand-based reverse screening. a Success in
predicting one experimentally validated target—among all known targets—for all
364,201 bioactive compounds external to the training/screening sets, as a function of
the position in the list of proteins ranked by probability calculated via the logistic
model (Fig. 1). b Percentage of success at different ranks as a function of the
molecular size (Supplementary Fig. 1d) showing the relationship between the
number of heavy atoms in the query molecule and the predictive ability. c Success in
predicting the target for the 300,978 compounds from the external test set having
exactly one experimental target. d Amount of bioactivity knowledge available on
targets. Distribution of the 2069 screened targets with respect to their number of

active compounds in ChEMBL, and the impact on the predictive ability on the
Reaxys active test compounds, showing much higher success rate for targets with
numerous known ligands. e Extent of chemical diversity among ligands of targets.
Distribution of the 2069 screened targets with respect to the number of Murcko
scaffolds27 among their active compounds in ChEMBL, and the impact on the
predictive ability on the Reaxys active compounds showing higher success rate for
targets with actives displaying numerous molecular scaffolds. f Same analysis on
chemical diversity conducted with Oprea scaffolds28 leading to the same conclusion
that higher predictive ability is obtained for protein target with chemically diverse
actives displaying numerous molecular scaffolds.
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rank #100 correspond to a list of estimated protein targets enriched by 55
and 10 folds, respectively. This level of enrichment demonstrates the
practicality of reverse virtual screening to provide useful guidance and focus
on relevant proteins in experiments like the deconvolution of phenotypic
screens, the setup of polypharmacology panels, or the selection of repur-
posing targets (remarkable applicative examples32,33).

A central question for any ligand-based approach is how the predictive
performance varieswith the amount of knowledge available. The capacity of
reverse screening to predict the correct target improves dramatically as the
pool of known ligand expands (Fig. 3d). For targets having 11 to 100 known
active compounds (36% of the proteins in the screening set), the success is
40.0% at highest probability and 72.5% at rank #100 (an 8.5-fold enrich-
ment). The success ismuch higher when the proteins to predict have a lot of
bioactivity data available like for those with more than a thousand actives
(13% of the proteins in the screening set) with 56.3% at highest ranking and
93.9% at rank #100 (an 11-fold enrichment). Conversely, proteins with only
few known ligands, like 10 or less actives (11% in the screening set) show
substantially lower success rates with 11.4% at highest ranking and 19.8% at
rank#100(a2.3-fold enrichment).This is ameasureof thedifficulty tofinda
very similar active molecule by screening on targets for which only few
are known.

The chemical diversity of actives for a given targetwas also investigated
through two distinct molecular scaffolds, the Murcko wire-like
frameworks29 and the more abstract Oprea approach30 (Fig. 3e and f).
Both analyses lead to the same conclusion that the more diverse the actives,
the higher the predictive ability. In both analyses, at rank#15, one can expect
a success of about 65% if the target has between 11 to 50 scaffolds among its
actives ( ~ 36% of the proteins). The success rate drops to about 55% when
the number of scaffolds is 10 or less, but increases up to about 80%when the
number of scaffolds is larger than 500 (only 1–4% in the ChEMBL
screening set).

For the first time, the relationship between the performance of ligand-
based target prediction and the size and diversity of the bioactivity space is
quantified. This is a strong incentive to populate specialized databases with
bioactive chemicals and targets as diverse as possible, rather than focusing
only on the number of molecules or proteins. Noteworthy though, the
probability calculated through the logistic equation is not affected per se by
the number of experimentally active compounds. It is enough to find one
active molecule by reverse screening to calculate a prediction, whose rele-
vance relies on the molecular similarity. However, in applicative target
prediction tools, it is common practice to impose a limit of similarity below
which a known active of the screening is considered dissimilar and does not
enter the calculation of probability, mainly for reducing the time of
computation25.

The extent of bioactivity knowledge useful to be reverse screenedmust
be balanced with data quality. The demonstrated excellent capacity to
predict targets of bioactive molecules is bound to improve further with
continued efforts made on the quantity, the diversity and the quality inside
specialized resources. For experts, we strongly suggest extracting open-
access data from e.g. ChEMBL20 or PubChem34, or broadly distributed data
like in Reaxys, applying strict filtering criteria (see Methods, Data
extraction).

Besides having validated and quantified the predictive ability of ligand-
based reverse-screening methods at large scale for the first time, we
recommend that developers of machine-learning target prediction
approaches follow the application-oriented validation strategy (see Meth-
ods, Testing strategy) and use large, high-quality, diverse and non-
overlapping bioactivity datasets (e.g. both provided datasets from
ChEMBL and Reaxys, used here for training and testing, respectively) for
future development, validation, and benchmarking studies.

The results and material provided here call for consolidating this
bioinformatic method as a valid andmature machine-learning approach in
drug research but also in the many applications in biology and chemistry
where the protein targets of smallmolecules require to be estimated. Finally,
this supervised machine-learning technology has proven simple and fast

enough for implementationbehindwebsites. SimpleWeb interfaces, like the
pioneer Similar Ensemble Approach (SEA, https://sea.bkslab.org)8 or the
extensively used and referenced SwissTargetPrediction (http://www.
swisstargetprediction.ch)24,25 can quickly provide trustful predictions for
routine work or for non-experts in the field. Of note, The Swis-
sTargetPrediction webtool has been cited 2260 times (according to Clar-
ivate®, accessedMarch 19, 2024); 94%were research articles, 78%of them in
the categories “Pharmacology, Medicinal Chemistry, Chemistry (Multi-
disciplinary), Biochemistry and Molecular Biology” suggesting experi-
mental studies including validation of the computational predictions, like in
refs. 32,33. Publications in other categories comprise reviews of medical
experts explaining the use SwissTargetPrediction for drug repurposing in
their branch, for instance in cardiology35 or engineers supporting the choice
and underlying the performance of SwissTargetPrediction’s unique logistic
model among other ML algorithms in their Experimentalist’s Guide to
Machine Learning for Small Molecule Design36.

Methods
Data extraction
The ChEMBL database20 version 25 was chosen as the data source for
training the machine-learning and for screening library, for three main
reasons: (i) the open-sourceness enables unrestricted availability for anyone;
(ii) various previous versions of the predictive engine evaluated in this work
have been built on ChEMBL data, some of which are in the backend of the
renown andmuch used SwissTargetPrediction webtool24,25; (iii) the content
is contemporaneouswith the granted access to the Reaxys database (version
03.2019), which has been an opportunity to shape an unprecedented large
external set from high-quality data from a different source yet of similar
origin, i.e. medicinal chemistry-related bioactivity knowledge.

ChEMBL and Reaxys raw content is differently annotated and orga-
nized, however it has been possible to homogenize them by applying fil-
tering criteria. We used MySQL requests to extract bioactivity data from a
local copy of ChEMBL25 for compoundswith 5 to 80 heavy atoms tested in
a binding assay (tagged “B” and confidence score >3) on a human, rat or
mouse macromolecular target (single protein or protein complex). Bioac-
tivity information for 501,959 unique small molecule compounds was thus
extracted: 452,656 actives with IC50, EC50, Ki or KD ≤ 10 µM, and 46,165
considered inactives with IC50, EC50, Ki or KD ≥ 100 µM. In between is a
“gray area” of 3138 compounds that were considered neither active nor
inactive. Comparable filters were applied to Reaxys 03.2019. Only active
compounds were retrieved with IC50, EC50, Ki, KD, Kic or Km ≤ 10 µM,
tagged with type binding, enzymatic, generic, second messenger, electro-
physiology or transactivation, and category in vitro. In accordance with the
validation objective of thiswork,molecules present in theChEMBL set were
removed from the Reaxys set using the Obgrep program (OpenBabel ver-
sion 2.4.1)23 and the JChem Search utility (version 21.3, www.chemaxon.
com). Moreover, only data points involving targets shared with the
ChEMBL training set were retained for the test set. This was achieved by
human curation and mapping on UniProt identifiers37. Information about
364,201 compounds active on 1180 human proteins was thus gathered. Of
note, themassive reduction of theReaxys data in response to the need of this
study resulted into using only 5% of the compound having bioactivity data
recorded in version 03.2019, and 8% of the human proteins targeted by
bioactive small molecules as included in version 03.2019. Importantly, all
1180 targets of the Reaxys test set are findable since part of the ChEMBL
screeningdatawhereas each364,201 test compoundwas confirmedexternal
to the training and screening sets (see Chemoinformatics section).

Chemoinformatics
The molecular information included in the bioactivity data extracted as
detailed above were submitted to further standardization treatments,
identical for both sources. The isomeric SMILES obtained from ChEMBL
and the two-dimensional SDF from Reaxys were unsalted, desolvated,
neutralized, kekulized with JChem Microservices Structure manipulation
tools (version 21.3, www.chemaxon.com) and stored as two separate flat
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files including all extracted values together with IDs. The training set
includes all information fromChEMBLdescribing the bioactivity of 501,959
unique compounds on 3669 proteins. The test set includes the SMILES,
ReaxysID, the number of targets and their UniProt identifiers derived from
Reaxys content for 364,201 compounds active on 1180 proteins.

To describe the chemical structure of the compounds, each standar-
dized SMILESwere then transformed asmolecularfingerprints by the path-
based FP2 method implemented in OpenBabel (version 2.4.1), which
encodes the presence or absence of linear fragments from 1 to 7 atoms23.
These FP2 fingerprints were stored as individual 1024-bit binary strings
(Fig.1a and Supplementary Fig. 1b).

Using JChem Microservices Structure manipulation and Chemical
calculations tools (version 21.3, www.chemaxon.com), each standardized
SMILES was then protonated as at pH 7.4 before generating the 20 lowest
energy conformations, which were stored as multi-MOL2 files. To describe
the shape and the spatial projection of physicochemical properties, every
conformer of each compound was encoded into a float vector according to
the ElectroShape 5D procedure22 as detailed several times19,24,25. In brief,
distances are computed between each atom and six centroids encompassing
the structure in a 5-dimentional space (three Cartesian coordinates, as well
as atomic charge38 and lipophilic contribution39). The average, the standard
deviation and the third moment of all distances for one conformation are
stored in an ES5D vector of 18 dimensions (xn;p), where xn;p is the average
distance to the order n between all atoms and the pth centroid (Fig.1a and
Supplementary Fig. 1b).

Noteworthy, the completeness of the extraction and standardization
procedurewas verifiedaposterioriby analyzing the pairs ofmoleculeswhere
the Tanimoto coefficient (Tc) on FP2 fingerprints equals to 1.000. These
cases were either: i) one molecule is a large substructure of the other (a
known limitation of path-based fingerprints); or ii) the compounds are
different salts or solvation forms of the same parent molecule; or iii) the
compounds differ by stereochemistry. In all cases, both compounds have
been kept since not linked to the same bioactivity as for both ChEMBL and
Reaxys entries. The same molecule was never found.

Physicochemical description
The physicochemical spaces covered by the training set and the test set were
measured by seven descriptors (See Supplementary Fig. 3). The Swis-
sADMEweb tool40 was used to calculate themolecular weight (MW), the n-
octanol/water partition coefficient (WLOGP)39, the topological polar sur-
face area (TPSA)41, the number of rotatable bonds, the fraction of sp3 carbon
(fCsp3), the number of H-bond acceptors (HBA) and the number of
H-bond donors (HBD), for the 501,959 training compounds and the
364,201 test compounds.

The overlap of each descriptor distributions between the training set
and the test set was quantified by Z-factor28, calculated according to Eq. (1),
(see Table 1).

Z-factor ¼ 1� 3ðδtr þ δtsÞ
μtr � μts
�
�

�
�

ð1Þ

where, σtr is the standard deviation of the descriptor values in the training
set; σts is the standard deviation of the descriptor values in the test set; µtr is
the average of thedescriptor values in the training set;µts is the average of the
descriptor values in the test set.

Training methodology
Two similarity matrices were computed by pair-wise comparisons between
all 501,959 compounds of the ChEMBL training set described by shape
(ES5D vectors) and chemical structure (FP2 fingerprints) (Supplementary
Fig. 1c). For shape comparison, the 3D-Score similarity matrix is built with
the highest Manhattan-based similarity values (Msi;j

¼ 1=ð1þ 1
18 di;jÞ),

where di;j is the smallest Manhattan distance between all 20 × 20 pairs of
ES5D vectors, each encoding a different conformation formolecules i and j.
For chemical structure comparison, the 2D-Score matrix contains the

Tanimoto coefficients (Tci;j
) between all FP2 fingerprints of pairs for

molecules i and j.
TheChEMBLtraining setwas split into subsets, eachone corresponding

to a givennumber of heavy atoms in thefirst (“query”)molecule of every pair.
Subsets were thus prepared from 11 to 59 heavy atoms; smaller molecules
were grouped in one class (≤ 10 heavy atoms) and larger molecules in
another one ( ≥ 60 heavy atoms) to finally define 51 size-dependant training
subsets (Supplementary Fig. 1d). Each compound in the training subset
(active or inactive) was compared to all known actives of each target. Inactive
compounds were defined as having an experimental activity higher than or
equal to 100 µM (see Methods, Data extraction), or as not being reported
active by ChEMBL in any binding assay on the protein under consideration
(i.e. alleged inactives). The ratio of 10 inactives for 1 active—previously
defined empirically as most suited19—was applied. For every comparison,
Msi;j

andTci;j
were retrieved, and the highest values for each similaritymetric

considered as the features of the model i.e. 3D-Score and 2D-Score, respec-
tively. Practically, each line of a subset training file regards one training
compound and one target, and reports the 3D-Score, 2D-Score, and “1” or “0”
to indicate whether this query molecule is active or inactive on that target.

For each of the 51 subsets, a binary logistic model was trained to find
the best regression constant C and coefficients (c1, c2) for both features
(3D-Score and2D-Score), according to theEq. (2),whereProbabilityofbeing
active on a given target is “1” or “0” for all training compounds. The default
parameters of the LogisticRegression function of the scikit-learn program
(version 0.23.2) were used.

Probability ¼ 1
1þ e�c1 × 3D�Score�c2 × 2D�Score�C

ð2Þ

The internal robustness was monitored by 10-fold cross-validation.
Matthews correlation coefficients (MCC) were calculated with Eq. (3) and
were averaged over the 10 cross-validation sets (MCCcv, Supplementary
Fig. 2b). As well averaged precision and recall were calculated with Eq. (4)
andEq. (5), respectively. The SupplementaryTable 1 provides, for each size-
related training subsets, the MCCCVwith standard deviation, together with
precision and recall. It should be noted that the 10 folds are random, given
the construction of the subsets, which are shuffled and contain no infor-
mation about molecule or target.

MCC ¼ TA×TI � FA × FI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTAþ FAÞ× ðTAþ FIÞ× ðTI þ FAÞ× ðTI þ FIÞ
p ð3Þ

Precision ¼ TA
TAþ FA

ð4Þ

Recall ¼ TA
TAþ FI

ð5Þ

where, TA is the number of known actives returning Probability > 0.5; TI is
the number of inactives returning Probability ≤ 0.5; FA is the number of
inactives returning Probability > 0.5; FI is the number of known actives
returning Probability ≤ 0.5

To reduce the noise from the training, the final coefficients to be
employed for calculating probability of predictions were obtained by fitting
theC, c1 and c2 curves via a third-degree polynomial function. Thisway a set
of final coefficients for predicting targets are obtained for each of the
51 subsets (Supplementary Fig. 2a).

Testing strategy
All 364,201 active compounds of the Reaxys external test set were reverse
screened towards the screening set, which corresponds to the active part of
the ChEMBL training set organized by known actives per human target (in
total 405,544 molecules active on 2069 proteins, Fig. 1b). For this, the 20
ES5Dvectorswhich encode the shape of the querymoleculewere compared
to the 20 ES5D vectors of all ChEMBL active compounds on one target. The
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highestMs corresponding to the active most similar in shape is considered
as the 3D-Score parameter. Similarly, the FP2 fingerprints describing the
chemical structure of the query compound is compared to the FP2 finger-
prints of all ChEMBL active compounds on one of the 2069 targets of
interest. The highest Tc value corresponds to the active most similar in
structure and is considered as the 2D-Score parameter. The probability for
the protein to be targeted by the query molecule is obtained by inputting
both parameters (3D-Score and 2D-Score) in the logistic Eq. (2) together
with the final coefficients and constant (c1, c2 and C) obtained by training
and curve-smoothing from the subset corresponding to the number of
heavy atoms in the query molecule (Fig. 1c).

The search for themost similar actives according to the shape or to the
chemical structure (which canbe the sameor twodifferent compounds) and
the calculation of the probability were repeated independently for all the
2069 protein targets of the screening set. The final output of this testing
workflow is a list of the 2069 possible targets ranked from themost probable
to the least probable. The quantified predictive ability of the ligand-based
reverse screening is defined from the ranks of the known experimental
targets for all 364,201 external test compounds (Fig. 3). It is important to
note that in the context of this reverse screening, and for the core of the study
presented here, the calculated probability values are considered as scores
with the only objective to rank the different predicted targets.

Scaffold computation
Two different scaffold definitions were applied to the molecules of both the
training set and the test set. All Standardized SMILES (see Chemoinfor-
matics section) were submitted to the strip-it program (version 1.0.2, www.
silicos-it.be) to extract the wire-like frameworks as proposed by Bemis and
Murcko29 (MURCKO_2definition), and themore abstractOprea scaffolds30

(OPREA_2 definition). This enabled the description of the chemical space
covered by both molecular sets (Supplementary Fig. 3) and the creation of
the so-called “Distinct test set” with 32,748 external test compounds
described by distinct scaffolds not extracted from any training molecule,
according to both the Murcko and the Oprea definitions (Fig. 2a). This
subset (9%of the entire test set) allowed for the evaluation of the success rate
of the ligand-based reverse screening for predicting targets of molecules
objectively chemically different from the training set (Fig. 2b). As well, the
predictive capacity of reverse screening with respect to the chemical
diversity of actives for a given target was made possible by grouping the
scaffolds of the known actives per proteins (Fig. 3e and Fig. 3f).

Data availability
Bioactivity data were obtained from the ChEMBL (version 25) and the
Reaxys (version 03.2019) databases for training/screening and testing,
respectively. A short extract of the rawChEMBLdata for training is given in
Supplementary Table 2 to show three lines corresponding to an active, an
inactive and a “gray area” datapoints, respectively. Processeddata have been
deposited in a Zenodo repository (https://doi.org/10.5281/zenodo.
7534175). The screening set file contains, for each active compound, the
standardized SMILES, the ChEMBLID, the number of experimental tar-
get(s) and their UniProt identifier(s). Similarly, the test set file contains, for
each active compound, the ReaxysID, the number of experimental target(s)
and the UniProt identifier(s). For Reaxys users, the chemical structure can
be obtained through bulk request on the corresponding website. Access to
www.reaxys.com and to Reaxys data can be obtained by contacting Elsevier
directly. The first 300 entries also display the standardized SMILES so that
every reader can reproduce the results obtained by the reverse screening
exercise. The construction of logistic models was performed on the data
described here by strictly following the steps detailed in the methodological
articles19,24,25,42 and their supplementary materials.
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