Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient data processing using tunable entropy-stabilized oxide memristors

Abstract

Memristive devices are of potential use in a range of computing applications. However, many of these devices are based on amorphous materials, where systematic control of the switching dynamics is challenging. Here we report tunable and stable memristors based on an entropy-stabilized oxide. We use single-crystalline (Mg,Co,Ni,Cu,Zn)O films grown on an epitaxial bottom electrode. By adjusting the magnesium composition (XMg = 0.11–0.27) of the entropy-stabilized oxide films, a range of internal time constants (159–278 ns) for the switching process can be obtained. We use the memristors to create a reservoir computing network that classifies time-series input data and show that the reservoir computing system, which has tunable reservoirs, offers better classification accuracy and energy efficiency than previous reservoir system implementations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tunable composition and structural disorder in single-crystalline ESO thin films on epitaxial YBCO electrodes.
Fig. 2: Tunable defect-mediated hopping conductivity in single-crystalline thin-film ESOs.
Fig. 3: Tunable RS characteristics.
Fig. 4: Experimentally implemented RC network with ESO memristors.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data related to this work are available from the corresponding authors upon request.

Code availability

Computational simulation code of the RC system for the speech-recognition task is available from the corresponding authors upon reasonable request.

References

  1. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article  Google Scholar 

  2. Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron 1, 411–420 (2018).

    Article  Google Scholar 

  3. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  Google Scholar 

  4. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  Google Scholar 

  5. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  6. Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2, 290–299 (2019).

    Article  Google Scholar 

  7. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article  Google Scholar 

  8. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Article  Google Scholar 

  9. Yin, S. et al. Monolithically integrated RRAM- and CMOS-based in-memory computing optimizations for efficient deep learning. IEEE Micro 39, 54–63 (2019).

    Article  Google Scholar 

  10. Liu, Q. et al. 33.2 A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip with fully parallel MAC computing. In Proc. 2020 IEEE International Solid-State Circuits Conference (eds Fujino, L. C. et al.) 500–502 (IEEE, 2020).

  11. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article  Google Scholar 

  12. Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article  Google Scholar 

  13. Moon, J., Wu, Y. & Lu, W. D. Hierarchical architectures in reservoir computing systems. Neuromorphic Comput. Eng. 1, 014006 (2021).

    Article  Google Scholar 

  14. Yoo, S. et al. Columnar learning networks for multisensory spatiotemporal learning. Adv. Intell. Syst. 4, 2200179 (2022).

    Article  Google Scholar 

  15. Yoo, S., Lee, E. Y.-J., Wang, Z., Wang, X. & Lu, W. D. RN-Net: reservoir nodes-enabled neuromorphic vision sensing network. Preprint at http://arxiv.org/abs/2303.10770 (2023).

  16. Li, Y., Wang, Z., Midya, R., Xia, Q. & Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D 51, 503002 (2018).

    Article  Google Scholar 

  17. Lee, J. & Lu, W. D. On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 30, 1702770 (2018).

    Article  Google Scholar 

  18. Lee, S. H. et al. Quantitative, dynamic TaOx memristor/resistive random access memory model. ACS Appl. Electron. Mater. 2, 701–709 (2020).

    Article  Google Scholar 

  19. Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    Article  Google Scholar 

  20. Yoo, S., Wu, Y., Park, Y. & Lu, W. D. Tuning resistive switching behavior by controlling internal ionic dynamics for biorealistic implementation of synaptic plasticity. Adv. Electron. Mater. 8, 2101025 (2022).

    Article  Google Scholar 

  21. Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020).

    Article  Google Scholar 

  22. Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 25, 4290–4299 (2015).

    Article  Google Scholar 

  23. Chang, T., Jo, S. & Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011).

    Article  Google Scholar 

  24. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    Article  Google Scholar 

  25. Meisenheimer, P. B. et al. Magneticfrustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 3, 104420 (2019).

    Article  Google Scholar 

  26. Chae, S., Williams, L., Lee, J., Heron, J. T. & Kioupakis, E. Effects of local compositional and structural disorder on vacancy formation in entropy-stabilized oxides from first-principles. npj Comput. Mater. 8, 95 (2022).

    Article  Google Scholar 

  27. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, 2007).

  28. Ielmini, D. & Zhang, Y. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl Phys. 102, 054517 (2007).

    Article  Google Scholar 

  29. Kotsonis, G. N. et al. Property and cation valence engineering in entropy-stabilized oxide thin films. Phys. Rev. Mater. 4, 100401 (2020).

    Article  Google Scholar 

  30. Jacobson, V. et al. The role of co valence in charge transport in the entropy-stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O. J. Am. Ceram. Soc. 106, 1531–1539 (2023).

    Article  Google Scholar 

  31. Schrøder, T. B. & Dyre, J. C. Universality of AC conduction in disordered solids. Rev. Mod. Phys. 72, 873–892 (2000).

    Article  Google Scholar 

  32. Elliott, S. R. A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987).

    Article  Google Scholar 

  33. Lee, J., Lu, W. D. & Kioupakis, E. Electronic and optical properties of oxygen vacancies in amorphous Ta2O5 from first principles. Nanoscale 9, 1120–1127 (2017).

    Article  Google Scholar 

  34. Phillips, J. C. Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 59, 1133–1207 (1996).

    Article  Google Scholar 

  35. Wu, Z. W., Kob, W., Wang, W. & Xu, L. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt. Nat. Commun. 9, 5334 (2018).

    Article  Google Scholar 

  36. Scher, H., Shlesinger, M. F. & Bendler, J. T. Time-scale invariance in transport and relaxation. Phys. Today 44, 26–34 (1991).

    Article  Google Scholar 

  37. Park, S.-O., Jeong, H., Park, J., Bae, J. & Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13, 2888 (2022).

    Article  Google Scholar 

  38. Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E. & Benosman, R. B. HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1346–1359 (2017).

    Article  Google Scholar 

  39. Wu, X., Saxena, V., Zhu, K. & Balagopal, S. A CMOS spiking neuron for brain-inspired neural networks with resistive synapses and in-situ learning. IEEE Trans. Circuits Syst. II 62, 1088–1092 (2015).

    Google Scholar 

  40. Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. S. Next generation reservoir computing. Nat. Commun. 12, 5564 (2021).

    Article  Google Scholar 

  41. Becker, S., Ackermann, M., Lapuschkin, S., Müller, K.-R. & Samek, W. Interpreting and explaining deep neural networks for classification of audio signals. J. Frank. Inst. 361, 418–428 (2024).

    Article  Google Scholar 

  42. Lyon, R. A computational model of filtering, detection, and compression in the cochlea. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (eds Dixon, N. R. et al.) 1282–1285 (IEEE, 1982).

  43. Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    Article  Google Scholar 

  44. Lee, D. et al. Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 5, 1800866 (2019).

    Article  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  46. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

  47. Van De Walle, A. et al. Efficient stochastic generation of special quasirandom structures. CALPHAD 42, 13–18 (2013).

    Article  Google Scholar 

  48. Zhang, J. et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31, 3705–3711 (2019).

    Article  Google Scholar 

  49. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Proc. Advances in Neural Information Processing Systems (eds Wallach, H. et al.) 8024–8035 (NeurIPS, 2019).

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) through awards CCF-1900675, ECCS-1915550, NSF CAREER grant no. DMR-1847847 and NSF MRSEC grant no. DMR-2011839, S.C. acknowledges support from Rackham Predoctoral Fellowship. We gratefully acknowledge the Michigan Center for Materials Characterization. We also acknowledge technical support from Lurie Nanofabrication Facility.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and S.C. conceived the idea and designed the experiments. S.C. synthesized the materials and fabricated the devices under J.T.H.’s supervision together with T.C. S.C. performed the TEM, EDS and material characterizations with T.M., H.P., K.N. and H.G.X. S.C. performed the DFT calculation with L.W. under E.K.’s supervision. S.Y. performed the pulse measurements and analysis with Y.P. and demonstrated the RC systems under W.D.L.’s supervision. S.Y. and S.C. wrote the paper under the supervision of W.L. and J.T.H. All authors contributed to the discussion and checked the paper.

Corresponding authors

Correspondence to John T. Heron or Wei D. Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Shriram Ramanathan, Cristina Rost and Ilia Valov for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Source data

Source Data Fig. 1

Unprocessed X-ray diffraction data and simulated structure data.

Source Data Fig. 2

Statistical source data in Fig. 2 and analysis data.

Source Data Fig. 3

Statistical source data and experimental data.

Source Data Fig. 4

Experimental data used in a computational simulation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S., Chae, S., Chiang, T. et al. Efficient data processing using tunable entropy-stabilized oxide memristors. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41928-024-01169-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing