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The ongoing COVID-19 pandemic is caused by a new human 
coronavirus (SARS-CoV-2). Infections can result in severe 
acute respiratory syndrome (SARS) as well as a growing 

number of other severe medical conditions. This global pandemic 
has already led to more than 600,000 deaths globally within seven 
months1. Over the past century, outbreaks of viral origin have 
increasingly evolved into worldwide pandemics (Fig. 1a,b). In the 
last 20 years, two coronaviruses have caused infections with respira-
tory syndrome: SARS-CoV-1 in 2003 and Middle East respiratory 
syndrome coronavirus (MERS-CoV) in 20122,3.

SARS-CoV-2 is highly contagious and spreads much like 
SARS-CoV-1, by close personal contact through respiratory droplets  

or mutual interactions with surfaces, as well as by aerosols3–6. 
Currently, it is not clear if additional transmission pathways are 
important for the spread of this disease locally or globally7,8. 
Investigation of a SARS-CoV-1 outbreak within an apartment build-
ing during the 2003 pandemic indicated that the virus can spread via 
wastewater systems9,10. It was suggested that the SARS-CoV-1 infec-
tion occurred through respiration of aerosols created by toilet flush-
ing or faulty plumbing systems9,10. Similar to SARS-CoV-1, RNA of 
the newly emerged SARS-CoV-2 has been detected in stool samples 
as well as wastewater11–14. Therefore, it has been postulated that 
wastewater, a sustainable source of freshwater15–17, could be an indi-
rect infection pathway during SARS-CoVs outbreaks (Fig. 1c)2,13,18,19.
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The COVID-19 pandemic has severely impacted public health and the worldwide economy. Converging evidence from the cur-
rent pandemic, previous outbreaks and controlled experiments indicates that SARS-CoVs are present in wastewater for several 
days, leading to potential health risks via waterborne and aerosolized wastewater pathways. Conventional wastewater treat-
ment provides only partial removal of SARS-CoVs, thus safe disposal or reuse will depend on the efficacy of final disinfection. 
This underscores the need for a risk assessment and management framework tailored to SARS-CoV-2 transmission via waste-
water, including new tools for environmental surveillance, ensuring adequate disinfection as a component of overall COVID-19 
pandemic containment.
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Entry of the virus into the sewer system results in a variety of 
potential transport pathways (Fig. 1c) that must be considered in the 
context of faecal–oral transmission2,18. In industrialized countries, 
most of the collected domestic wastewater and viral load is treated 
in centralized wastewater treatment plants (WWTPs). However, 
conventional WWTPs generally do not remove virions completely 
and high influent viral loads during pandemics can lead to insuffi-
cient reduction of viruses before discharge20–22. Furthermore, fresh-
water scarcity results in the reuse of an increasing volume of treated 
wastewater for a variety of purposes, such as groundwater recharge, 
recreation and irrigation of food crops, thus creating other potential 
routes for SARS-CoV-2 transmission. An additional and potentially 
serious health risk is faecal–oral transmission in low-income coun-
tries where communities with inadequate sanitation infrastructure 
(for example, open sewers and direct discharge into the environ-
ment) could be infected by untreated wastewater or faecal waste23–25.

Overall, it is critical to evaluate the potential of wastewater as a 
transmission pathway of SARS-CoV-2. Information on the survival 
and dissemination of enveloped viruses in general, and SARS-CoV-2 
in particular during wastewater collection, treatment and reuse, is 

limited. Herein we critically review and synthesize existing knowl-
edge on the health risks as well as the potential spread of SARS-CoVs 
in waterborne, waterborne–aerosolized and waterborne–foodborne 
pathways during a pandemic, when the probability of viral infection 
is substantially higher than in non-outbreak scenarios. Specifically, 
we focus on centralized wastewater systems that are commonly 
implemented in regions with moderate to high socio–economic 
capacity, including those regions currently experiencing the largest 
numbers of COVID-19 cases. These conditions indicate an urgent 
need for monitoring programmes and risk assessments tailored to 
SARS-CoV-2 in wastewater, which may aid in the early detection 
and containment of future viral disease outbreaks.

SARS-CoVs
Viruses are ubiquitous nanoscale infectious agents that exist as 
extracellular particles between intracellular reproduction cycles, 
and infect specific host cells. Viruses vary in structure (from simple 
helical capsids to complex constructs), size (20–300 nm), as well 
as replication mechanisms (that is, budding to lytic) and life-cycle 
durations (minutes to hours). In some viruses, the capsid is  
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Fig. 1 | Overview of pandemics and waterborne pathways. a,b, Approximate number of infected and deceased individuals in extensive outbreaks (a) and  
the COVID-19 pandemic in recent months (b). c, Overview of potential SARS-CoV-2 dissemination via waterborne pathways in industrialized countries. 
Included outbreaks were caused by enveloped single-stranded RNA viruses. Asterisks depict a confirmed or putative dissemination via wastewater. Letters  
next to each pandemic indicate specific references: a125,126; b127; c128; d106,127; e126,129; f130,131; g132; h127; i133,134; j1 (data sources accessed 28 July 2020).
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surrounded by an envelope consisting of a lipid-bilayer membrane 
with embedded proteins that play a crucial role for attachment to the 
host cell. Enveloped viruses are often more readily inactivated than 
non-enveloped viruses since the envelope is less robust against envi-
ronmental conditions and disinfecting agents26. The viral genome 
can consist of either DNA or RNA, with RNA viruses showing a 
higher propensity for mutations26.

Coronaviruses (CoVs) are enveloped, single-stranded, 
positive-sense RNA viruses, ranging from 60 to 220 nm in size. 
The name derives from the spike glycoproteins that decorate the 
envelope giving the virions a crown-like shape (‘corona’ in Latin)  
(Fig. 2a,b)3,27. The spike glycoproteins mediate receptor recogni-
tion and membrane fusion. Recent studies have suggested that 
the spike glycoprotein of SARS-CoV-2 binds the human receptors 
with a higher affinity than SARS-CoV-1, leading to a more infec-
tious virion28. SARS-CoV-1 and SARS-CoV-2 are members of lin-
eage B of the genus Betacoronavirus3,27 (Fig. 2c); these viruses are 
both highly adaptive and able to infect different human tissue. They 
easily transfer between new host species, and adjust to diverse eco-
logical conditions through accumulation of point mutations and 
homologous recombination29.

Sources of SARS-CoVs in wastewater
Although SARS-CoVs are primarily respiratory viruses, 
SARS-CoV-2 may infect and replicate in the gastrointestinal 
tract30,31. Additionally, it has been observed that SARS-CoV-2 
(detected via reverse transcription quantitative polymerase chain 
reaction (RT-qPCR)) enters the wastewater system via human 
excretions (that is, stool and urine)13,14,32. The frequency of gastroin-
testinal disease manifestations, including diarrhoea and vomiting, 
ranges between 2% to 80% of confirmed patients12,33,34. Up to 67% of 
stool samples test positive for SARS-CoV-2 RNA with counts nearly 
reaching the maximum in sputum (108 copies ml–1 stool versus 
109 copies ml–1 sputum)35,36. SARS-CoV-2 RNA shedding in stool 
has also been observed in cases without gastrointestinal but other 
symptoms, as well as in pre- and asymptomatic cases, and for up 
to four weeks after symptoms cease34–37. Interestingly, SARS-CoV-2 
RNA is often present in stool after respiratory infection resolves and 
respiratory samples are found to be negative35,38.

Although only a few studies have succeeded in isolating infective 
SARS-CoV-2 from stool and urine samples32,39,40, many studies have 
detected SARS-CoV-2 RNA in stool and wastewater13,14,20,41–43. To 
date it is unclear if SARS-CoV-2 RNA in the stool originates from 
swallowed sputum or active replication within the gastrointestinal  

tract; the latter case would strongly influence dissemination of 
infective virions via wastewater. A bioinformatics modelling study 
and an experimental study indicated infection and replication of 
virions in the gastrointestinal tract30,31. Additionally, a compart-
mental epidemiological model based on data from the Wuhan epi-
demic indicated that the faecal–oral route is putatively important 
for transmission of the virus44. These results suggest that replication 
of the virus in the intestinal tract is highly likely. Thus, wastewater 
should be assumed to contain a considerable number of infective 
virions2,13,35,45. The unsuccessful isolation of infective SARS-CoV-2 
from stool and wastewater samples may be due to the difficulty of 
isolating intact enveloped virions, rather than the absence of infec-
tive virions.

Greywater (that is, water discharged from sinks, showers and 
drains; Fig. 1c) is not expected to be a major SARS-CoV-2 trans-
mission vehicle despite containing body fluids such as saliva and 
sputum with potentially high viral concentrations35,39. Low virus 
concentration is expected since greywater often contains detergents, 
soaps and other disinfectants, to which SARS-CoV-2 is sensitive5,46.

Detection and infectivity of SARS-CoVs
Current detection and monitoring of SARS-CoVs in wastewa-
ter can be divided into three categories: (1) qualitative and (2) 
quantitative molecular approaches as well as (3) in vitro counts 
by plaque-forming units (PFU). Molecular approaches target the 
SARS-CoVs RNA and can provide estimates of the presence and 
abundance of RNA copies (or fragments) in a water sample, but 
do not measure viral infectivity18. PFU can provide a quantitative 
estimation of infective virions, but this method is slow and difficult 
as in vitro cultivation requires an appropriate host18,26. It should be 
noted that the sensitivity of plaque assays for viral detection can be 
further limited by the cytotoxicity of toxins often found in waste-
water samples47–49. Additionally, virus concentrations need to be 
even higher to isolate infective virions compared to RNA detection 
(>106 copies ml–1)35. Therefore, it is not surprising that wastewater 
of hospitals tested positive for SARS-CoVs RNA, but not for infec-
tive virions13,35. However, it is also possible that the concentration of 
infective virions in hospital wastewater was under the detection limit 
due to the intense use of disinfectants and various surfactants46,50.

Regardless of the methods used, detection and enumeration of 
SARS-CoVs in wastewater is extremely challenging due to their 
low abundance after dilution (101 to 106 copies l–1) relative to direct 
assays on human excretions11,14,20,45. Thus, concentrating the sam-
ple with high recovery rates is required51 and promising methods 
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have recently been reviewed19,52. Intact virions can be concentrated 
on cell-free substrate coated with corresponding receptors after 
enzyme treatment to remove broken virions53. Then, bound virions 
can be quantified by RT-qPCR53. Recently, this method has been 
shown to detect and quantify SARS-CoV-2 in wastewater after 
dedicated extraction methods13,45,54. A transcriptome (RNA) analy-
sis from activated sludge uncovered a wide range of uncultivated 
bacterial viruses that could not be discovered in other molecular 
techniques55. Although low viral concentrations will require various 
concentration approaches, this technique, in addition to metage-
nomic virome studies56, may provide a novel template for the 
detection of single-stranded RNA viruses such as SARS-CoV-2 in 
wastewater.

Both abundance and viral infectivity are critical factors for dis-
ease transmission. However, extraction protocols often lead to low 
recovery rates for intact viruses (on the order of a few percent), 
since the lipid-bilayer membrane surrounding the capsid is easily 
disrupted18,57. Thus, other approaches must be developed to deter-
mine infectivity in wastewater. Currently, the minimal infectious 
dose (MID) of SARS-CoV-2 (that is, the number of viral particles 
that causes an infection) for humans is unknown19. Yet, the rapid 
spread of the disease suggests that the MID is low and similar to 
other enveloped viruses (Table 1)27,58,59.

Survival of SARS-CoVs in water and wastewater
Survival time distributions of viruses are often exponential and 
reported as a half-life, number of log removal or the time required to 
reach 90% inactivation (T90; Fig. 3). Under numerous environmen-
tal conditions, virions of SARS-CoVs and other enveloped viruses 
remain infective for several days (Fig. 3). Factors that were found 
to affect SARS-CoVs infectivity in water and wastewater include 
temperature, organic content and solution pH46,60,61. However, the 
way this translates into risk of infection is yet unknown, especially 
since human activities and water exposure differ across seasons and 
regions.

Temperature is an important variable for survival of virions in 
general and SARS-CoVs in particular46,60,61. Longer retention of 
SARS-CoVs infectivity has been observed at lower temperatures 
(for example, 14 days at 4 °C versus two days at 25 °C in wastewa-
ter)61. This implies that in cold seasons and temperate climate zones, 
the environmental survival of SARS-CoV-2 may be increased. 
Temperatures above 56 °C reliably inactivate SARS-CoV-1 and 

SARS-CoV-2 after 90 minutes and 30 minutes, respectively, most 
likely due to denaturation of proteins and lipid bilayers46,62,63.

Organic matter at increasing concentration was reported to 
reduce the survival time of spiked CoVs in various water samples 
(Fig. 3; for example, ten days in lake water versus two days in raw 
wastewater). This may be due to the presence of antagonist bacte-
ria that can inactivate the viruses via extracellular enzymatic activ-
ity57,64,65. Differently, organic matter in the context of wastewater 
treatment can non-specifically adsorb to the envelope of SARS-CoV 
virions, protecting them from oxidative damage, chlorination, ultra-
violet (UV) radiation and protozoan or metazoan predation57,65. 
Additionally, viruses shed by infected patients are often already 
associated with organic material (for example, faeces and sputum) 
and are thus protected from some inactivation mechanisms57,60.

The pH of faeces had a considerable impact on SARS-CoV-1 
survival ranging from three hours in slightly acidic faeces of a 
new-born to four days in diarrheal faeces of an adult with a pH of 
up to 966. In contrast, SARS-CoV-2 in suspension does not show 
substantial reduction in infective titre after 60 minutes over a wide 
range of pH (3–10)46.

Dissemination of SARS-CoVs from sewer systems
Wastewater in regions with moderate to high socio–economic 
capacity, which is the focus of this Review, is mostly collected 
from large municipal areas. The size of the population connected 
to the sewer system has a direct impact on the concentration of 
SARS-CoVs in wastewater and thus the potential for dissemination. 
Extensive sewer systems in large cities effectively mix wastewater 
from large areas, resulting in a rather homogenous viral dispersion, 
and thus lower concentration67. However, larger populations inher-
ently have greater likelihood of virus importation, and COVID-19 
outbreaks in large population centres naturally produce high virus 
concentrations that increase transmission risk68,69. Survival time of 
SARS-CoVs in wastewater is sufficiently long for infective viruses 
to reach WWTPs and to be further disseminated by several trans-
mission pathways18,57,61. SARS-CoVs, similarly to other microbial 
pathogens, can reach natural water bodies used for recreation such 
as ponds, rivers and lakes via leakage or combined sewer over-
flows during storm events18,57. The high infectivity of SARS-CoV-2 
could lead to transmission of COVID-19 in such environments. 
A compartmental epidemiological model suggests that contami-
nated natural water bodies could become environmental reservoirs 

Table 1 | Properties and minimum infectious dose of selected respiratory viruses

Virus Size (nm) Tested host Exposure mode Minimal infectious dosea Reference

SARS-CoV-1 80–120 Cats Intratracheal 106 TCID50 (~7 × 105 
PFU)b

117

Ferrets Intratracheal 106 TCID50 (~7 × 105 
PFU)

117

Transgenic mice Intranasal 102 PFU 118

SARS-CoV-2 60–140 Rhesus macaques Intranasal, ocular conjunctival, 
intratracheal, oral

106 TCID50 (~7 × 105 
PFU)

119,120

Ferrets Intranasal 105.5 TCID50 (~105 PFU) 4

Transgenic mice Intranasal 105 TCID50 (~7 × 104 
PFU)

121

MERS-CoV 110–140 Transgenic mice Intranasal 103 PFU 122

H1N1 influenza 80–120 Human Nasal 103 TCID50 (~7 × 102 
PFU)

123

Rhinovirus 30–70 Human Nasal 102 TCID50 (~7 × 10 PFU) 123

Respiratory syncytial virus 150–250 Human Nasal 104 TCID50 (~7 × 103 PFU) 123
aTCID50, 50% tissue culture infectious dose; PFU, plaque-forming units; bTCID50 to PFU conversion is estimated according to the American Type Culture Collection (ATCC) estimate124.
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of SARS-CoVs, which would require the enforcement of strict 
post-epidemic measures to prevent re-infection44.

Surveillance of SARS-CoV-2 via wastewater monitoring has 
recently been highlighted as a powerful tool for wastewater-based 
epidemiology and public health interventions complementary to 
individual testing11,19,41,45,54,70. Collecting data from central sewer sys-
tems in addition to individual testing can provide real-time informa-
tion on the distribution of SARS-CoV-2 in related communities19,20,70 
at reduced costs relative to personal testing71. Moreover, this infor-
mation can be used as an early warning signal for COVID-19  
outbreaks in specific communities with pre- and asymptomatic 
infected individuals14,19,54,72. These early signs of outbreak can be 
detected as development of SARS-CoV-2 concentration in waste-
water precedes changes in confirmed COVID-19 cases by at least 
several days20,54. Wastewater monitoring is particularly useful to 
provide an early indication of re-emergence of SARS-CoV-2 in 
communities that contained an initial outbreak and subsequently 
relaxed containment measures. This information provides the 
ability to reinstate containment measures and allocate healthcare 
resources before COVID-19 infections become highly prevalent in 
specific communities. The approach of relaxing containment mea-
sures and reopening economies with ongoing community surveil-
lance could be a cost-effective means for pandemic containment.

Low-income regions often lack wastewater sanitation, with 
partial to no sewer systems. Over 0.5 billion people still practice 
open defaecation, while another 3.5 billion people use unsafe sani-
tation73,74. These circumstances may facilitate transmission of viral 
diseases such as SARS-CoV-2 via the incidental faecal–oral route, as 
people are likely to come in contact with infected waste or wastewa-
ter75,76. Unsafe sanitation is often combined with inadequate drink-
ing water infrastructure (for example, exposed sewer systems that 
contaminate freshwater sources), and lack of basic hygiene services 
such as clean water and soap for hand washing73. The spread of the 
pandemic in low-income countries is likely to be further acceler-
ated by high population density in cities together with limited 
implementation of COVID-19 control measures23,77,78. Additionally, 

tropical and/or monsoonal weather with large volumes of rainwater 
flushing streets further increases viral contamination of water bod-
ies. We stress that the COVID-19 pandemic is likely to be especially 
precarious for the 4 billion people who lack access to safe sanita-
tion, frequently come in direct contact with faecally contaminated 
water and consume crops irrigated with contaminated wastewa-
ter23,77. Although these infection pathways have been confirmed 
for other viral diseases75,76, no such studies have been reported to 
date for COVID-19. Thus, investigation of the faecal–oral route for 
SARS-CoV-2 in low-income regions is of paramount importance.

SARS-CoVs dispersion in irrigated agriculture
Recent evidence of SARS-CoV-2 RNA in treated wastewater20 
indicates possible risks associated with wastewater reuse for agri-
culture. Irrigation of fruit and vegetables with contaminated waste-
water effluent may serve as an indirect transmission pathway for 
SARS-CoVs through handling or consumption of contaminated 
food79,80. This may be especially relevant for technologies that do 
not apply the water directly to the root zone (for example, drip irri-
gation), such as surface or sprinkler irrigation. Although foodborne 
transmission of SARS-CoV-2 has not been documented, similar 
viruses are known to be transmitted by foodborne pathways follow-
ing irrigation with treated wastewater81,82. Bovine CoV, which is very 
similar to SARS-CoVs, remains infective on lettuce leaves for the 
entire shelf-life of the lettuce (at least 14 days)81 and human CoV 
229E on lettuce only declined by 0.2 log after two days of storage at 
4 °C82. Moreover, washing produce does not completely eliminate 
virions81. Thus, especially during a large SARS-CoV outbreak in 
areas without adequate sanitation, the connection of faecal–water-
borne–foodborne transmission through irrigation with wastewater 
can be an important dissemination pathway. Additionally, sprinkler 
irrigation with wastewater and fertilization with wastewater solids 
generates considerable aerosols. These aerosols are often dispersed 
at regional scales79,80, which is especially important for farm work-
ers and potentially relevant where agricultural and populated areas 
are in relatively close proximity. Transmission of SARS-CoV-2 via 
waterborne–foodborne or waterborne–aerosolized pathways dur-
ing an outbreak can be minimized by disinfection prior to waste-
water reuse, emphasizing the importance of standards for safe 
wastewater reuse.

Wastewater aerosols and SARS-CoVs exposure
Aerosolized viruses may be generated and transported locally in 
buildings as well as at larger scales by winds during wastewater 
treatment, from recreational water bodies (for example, urban rivers 
and ponds) fed by treated wastewater, or during irrigation and fer-
tilization80,83–85. The formation of wastewater aerosols and droplets 
was confirmed as a key mechanism for faecal–droplet–respiration 
transmission during the SARS-CoV-1 outbreak, and is suspected in 
the current SARS-CoV-2 outbreak10,83,86. Aerosolized human CoV 
(HCoV 229E) has been found to be infective for up to six days at  
25 °C in 50% humidity, and is suspected to be infective for even  
longer periods at 6 °C87. SARS-CoV-2 remains viable in aerosols for 
up to 16 hours with a median half-life of approximately one hour88,89. 
Although dispersal of larger droplets is limited, as they deposit close 
to the source, larger droplets cause local contamination of surfaces 
due to their enhanced capacity to carry pathogens, and are a major 
vector for pathogen transmission, including SARS-CoV-286,90.

WWTP operators must follow standard practices to limit expo-
sure to wastewater and contaminated surfaces, thus reducing the 
risk of exposure to pathogens, such as SARS-CoV-219,91. Although 
no analysis of aerosolized SARS-CoV-2 within WWTPs has been 
reported, aerosol formation during the treatment process could pose 
a risk to WWTP operators and facilitate dissemination, especially 
for WWTPs in densely populated areas84,92. This pathway has been 
observed for multiple enteric viruses and bacteria84,92. Non-potable 
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reuse of treated wastewater or greywater systems that generate aero-
sols (for example, cooling towers and sprinklers) as well as decora-
tive structures such as fountains must ensure sufficient treatment to 
avoid infection pathways beyond WWTPs.

Dissemination into surface water and groundwater
SARS-CoVs may be disseminated to aquatic ecosystems dur-
ing an outbreak due to leaking sewers or insufficient removal fol-
lowing wastewater treatment. Leakage of wastewater from septic 
tanks, pipe failure or lack of proper infrastructure can result in 
direct discharge of SARS-CoVs into receiving water bodies (for 
example, streams, rivers, ponds, estuaries, lakes and groundwater). 
Additionally, treated wastewater such as secondary effluent that is 
discharged may also carry viruses into the environment20,22. Except 
for two studies that reported SARS-CoV-2 RNA in an Italian and 
a Japanese river, but did not succeed to isolate infective virions93,94, 
there has not been direct detection of SARS-CoVs in aquatic envi-
ronments52. However, several previous studies found that enveloped 
viruses travel considerable distances, and survive for a prolonged 
time in aquatic environments95,96. Further, rain events can increase 
virus concentrations in natural water systems via combined sewer 
overflows or failure of wastewater infrastructure95,97, which raises 
the probability of SARS-CoVs dissemination.

In the subsurface, viruses can be highly mobile due to the steric  
interaction of their outer spike glycoproteins with the porous 
media98,99, especially through preferential flow pathways and frac-
tures100. Based on the size of SARS-CoV-2 (~100 nm) as well as the 
relatively long survival time in water (Fig. 3) and on surfaces5,88, 
SARS-CoV-2 could potentially travel considerable distances in the 
subsurface leading to contamination of aquifers used as freshwa-
ter sources for potable use. However, a recent study indicated that 
many enteric viruses are completely removed from secondary efflu-
ent during infiltration through a 30–40-m-thick vadose zone, lead-
ing to zero virus counts in the monitored groundwater wells101. This 
indicates that long infiltration times drastically reduce the risk of 
groundwater contamination of viruses, including SARS-CoV-2101.

Wastewater treatment to reduce dissemination
In WWTPs, virions can potentially be removed through physical, 
biological and chemical processes (Fig. 4). Wastewater first under-
goes primary treatment where removal of viruses by sedimenta-
tion alone is low102,103. Secondary (biological) treatment combines 
aeration tanks with secondary sedimentation to retain the activated 

sludge. Virus sorption to organic particulates and removal by set-
tling is thought to play an essential role in these secondary treat-
ment steps103,104. Treatment approaches that maximize retention and 
removal of solids (for example, membrane bioreactors) have been 
suggested as a particularly efficacious means to remove viral loads 
from wastewater104,105. Although no specific data for SARS-CoV-2 
are yet available, enveloped viruses are more likely to be removed 
together with particles than non-enveloped viruses57,65. Additionally, 
extracellular enzymes such as hydrolases and proteases present in 
the concentrated bacterial consortia characteristic of secondary bio-
reactors are also likely to inactivate SARS-CoVs, similarly to other 
viruses57,104,105.

Concentrating SARS-CoVs in the sludge may pose the subse-
quent problem of sludge treatment and disposal102. In a metage-
nomic study on sludge from wastewater treatment processes, a 
high diversity of viruses, including those associated with respira-
tory diseases, was detected106. CoV genes were found in 80% of 
untreated wastewater sludge samples, and the second-most com-
mon RNA virus was CoV HKU1106. Data on the survival of envel-
oped viruses during sludge treatment are scarce and non-existent 
for SARS-CoVs18. Based on the fate of non-enveloped viruses, treat-
ment of sludge by thermophilic digestion, lime addition, drying and 
composting is most promising for SARS-CoVs inactivation102,107. 
However, aerosol control should still be applied during fertilization 
with sludge in agricultural settings102,108.

The inactivation or removal of SARS-CoVs during primary and 
secondary treatment has not been studied in detail. SARS-CoV-2 
RNA has been detected in treated wastewater with only 2-log 
removal of viruses compared to raw wastewater20, yet complete 
removal after secondary treatment was observed in a different 
study14. These mixed results indicate that, similar to other viruses, 
sufficient inactivation of SARS-CoV-2 is not ensured21,22. In some 
countries (for example, Israel), secondary effluent is further dis-
infected prior to reuse or before discharge into the environment 
to minimize viral dissemination (Fig. 4). Yet, disinfection mea-
sures are not compulsory in many countries (for example, in the 
United States, reuse without disinfection is allowed for irrigation of 
vineyards and wetlands, as well as stream augmentation), increas-
ing the potential for SARS-CoV-2 dissemination. Disinfection of 
treated wastewater may currently be the most important step to 
ensure reliable SARS-CoV-2 inactivation2,18. While the mechanisms 
are unclear, enveloped viruses like SARS-CoVs tend to be more 
susceptible to chlorine-based disinfectants than non-enveloped 
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viruses60,109. Although not tested in real wastewater, enveloped 
viruses such as SARS-CoV-2 are often found covered in organic 
material that provides a physical barrier against disinfection57,60. 
Hence, it is likely that in a complex medium rich in organic mat-
ter such as secondary effluent, SARS-CoV-2 would be less sensitive 
to disinfectants. In addition, chemical disinfectants are scavenged 
by organic matter and nitrogen-containing compounds in second-
ary effluent110, resulting in lower concentration of active chlorine. 
Consequently, infective enteric viruses have been detected even in 
disinfected secondary effluent21,22,111. During a pandemic outbreak, 
when viral loads in raw wastewater would be higher than normal, 
insufficient viral removal (particularly if disinfectant doses are not 
increased) may result in viral transmission via reuse.

Many industrialized countries apply tertiary treatment (that is,  
advanced particle removal and disinfection) before wastewater reuse.  
Tertiary treatment can include sand filtration, managed aquifer 
recharge, UV radiation, advanced oxidation processes (AOP) and/or  
membrane technologies to ensure enhanced removal of micro-
bial pathogens (Fig. 4). UV irradiation at 254 nm is known to be 
effective against SARS-CoV-162,112 through reactions with the viral 
genome109. However, the required dose (a function of irradiance and 
time) is highly dependent on many virus- and media-related fac-
tors (that is, concentration of organic matter) and ranges widely112. 
Ozone-based treatment of secondary effluents effectively inacti-
vates viruses through DNA or RNA attack by ozone113 or by form-
ing free radicals114. Similar to chlorination, considerable scavenging 
of oxidation capacity by background constituents and formation of 
harmful disinfection by-products are possible. To date, the effec-
tiveness of these disinfection processes for SARS-CoV-2 inactiva-
tion is unknown, and research is urgently needed.

Membrane technology to avert dissemination
Low-pressure membrane filtration, which includes microfiltration 
(MF) and ultrafiltration (UF), is an advanced technology used in 
wastewater treatment with potential to provide a complete barrier to 
SARS-CoV-2 dissemination. Additionally, the modular structure of 
membrane systems could facilitate upgrading of existing WWTPs to 
reduce effluent concentrations of SARS-CoV-2. Removal of virions 
by these porous membranes (that is, MF > 50 nm and UF 2–50 nm) 
is feasible, albeit highly dependent on the pore size distribution in 
relation to the size of the target virus110,115. Thus, SARS-CoV-2 with 
a diameter of ~100 nm should be removed reliably by UF. Virion 
removal may be further enhanced, depending on surface charac-
teristics of both membranes and SARS-CoVs (that is, hydrophobic 
and charged regions on the envelope), which can lead to removal 
beyond size exclusion due to electrostatic and hydrophobic inter-
actions104,115. Application of UF in membrane bioreactors (MBRs) 
further increases viral removal (not specific to SARS-CoVs) via a 
combination of three mechanisms: steric removal, adsorption and 
inactivation during biological treatment104,105,115. Consequently, 
MBRs have shown increased removal of enteric viruses (up to 
6.8-log removal) in comparison to conventional WWTPs (up to 
3.6-log removal)115. Although less common in wastewater treat-
ment, high-pressure membrane systems using denser and tighter 
membranes (pore size <2 nm), such as nanofiltration (NF), reverse 
osmosis (RO) and forward osmosis (FO) membranes should accom-
plish complete removal of SARS-CoVs110,116.

Critical knowledge gaps and recommendations
The health risks of COVID-19 via waterborne transmission may 
be greater than initially assumed, and wastewater should be fur-
ther studied as a potential pathway for COVID-19 transmission. 
Evidence for the presence of SARS-CoV-2 RNA in wastewater 
systems is accumulating around the world. The large number of 
infected individuals in the current pandemic together with the 
high infectivity of SARS-CoV-2 could present a new challenge for 

wastewater treatment and calls for future assessment of the risk for 
transmission via wastewater reuse. Such risks might be expected to 
be highest in areas with high population density, direct exposure to 
aerosolized wastewater as well as regions that lack adequate waste-
water collection, treatment and disinfection.

Extensive research into the frequency of detecting the infectious 
SARS-CoV-2 in wastewater is urgently needed to gain: (1) critical 
information on the abundance of viruses in raw wastewater, treated 
wastewater and the receiving environment, which can be used to 
generate a quantitative risk assessment; (2) information on removal 
efficiencies through the wastewater treatment train; (3) disinfec-
tion requirements according to virus loading and transmission via 
WWTPs to ensure complete removal of SARS-CoV-2 for wastewa-
ter reuse; and (4) epidemic surveillance for policymakers on the 
outbreak, extent and prevalence of the COVID-19 pandemic within 
the community.

Characterizing and mitigating any identified risks of 
SARS-CoV-2 transmission via waterborne pathways will require 
addressing the following knowledge gaps: (1) SARS-CoV-2 con-
centrations in wastewater are currently estimated by molecular 
approaches that quantify viral RNA rather than infective virions. 
Whether these approaches predominantly quantify fully functional 
virions rather than viral RNA fragments remains to be determined. 
(2) The minimal infectious dose of SARS-CoV-2 from water and 
aerosols is currently unknown. (3) The extent of SARS-CoV-2 dis-
semination via waterborne pathways is not clear, and neither is 
the associated SARS-CoV-2 loading of freshwater environments 
and water reuse systems (for example, for recreation, cooling  
and agriculture).

Overall, this Review highlights the urgent need for enhanced 
monitoring, risk assessment and new risk management strategies 
for COVID-19 in wastewater. Developing innovative tools for envi-
ronmental monitoring will provide necessary scientific evidence for 
policymakers, while optimized disinfection strategies will mitigate 
COVID-19 transmission associated with wastewater reuse. Beyond 
COVID-19, these approaches will also improve detection, response 
and containment of future viral disease outbreaks.
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