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Tree growth potential and its 
relationship with soil moisture 
conditions across a heterogeneous 
boreal forest landscape
Johannes Larson 1*, Carl Vigren 2, Jörgen Wallerman 2, Anneli M. Ågren 1, 
Alex Appiah Mensah 2 & Hjalmar Laudon 1

Forest growth varies across landscapes due to the intricate relationships between various 
environmental drivers and forest management. In this study, we analysed the variation of tree growth 
potential across a landscape scale and its relation to soil moisture. We hypothesised that soil moisture 
conditions drive landscape-level variation in site quality and that intermediate soil moisture conditions 
demonstrate the highest potential forest production. We used an age-independent difference model 
to estimate site quality in terms of maximum achievable tree height by measuring the relative change 
in Lorey’s mean height for a five year period across 337 plots within a 68  km2 boreal landscape. We 
achieved wall-to-wall estimates of site quality by extrapolating the modelled relationship using 
repeated airborne laser scanning data collected in connection to the field surveys. We found a clear 
decrease in site quality under the highest soil moisture conditions. However, intermediate soil 
moisture conditions did not demonstrate clear site quality differences; this is most likely a result of 
the nature of the modelled soil moisture conditions and limitations connected to the site quality 
estimation. There was considerable unexplained variation in the modelled site quality both on the plot 
and landscape levels. We successfully demonstrated that there is a significant relationship between 
soil moisture conditions and site quality despite limitations associated with a short study period in a 
low productive region and the precision of airborne laser scanning measurements of mean height.

Forest growth rate is a key aspect of forested ecosystems, and is influenced, among other things, by the complex 
and dynamic interactions among environmental factors that vary depending on local biotic and abiotic condi-
tions. On both global and regional scales, climate and soil conditions represent some of the most influential 
factors that explain spatial variation in forest growth. Forest management adds further complexity to landscape 
variation of forest properties by altering important forest characteristics such as age, structure, and species 
 distribution1. It is important to note that both unmanaged and managed forest areas are also affected by natural 
disturbances such as forest fires, windstorms, and insect outbreaks. As such, untangling the complex interactions 
between the environmental drivers that regulate forest growth constitutes a grand scientific challenge. This is 
particularly relevant for the managed boreal forests of northern Europe, where the expansive forested landscape 
has been managed for several hundred years; this has resulted in a patchwork of human-induced actions and 
natural disturbance that exert significant influences on the regulation of growth rate.

Within boreal landscapes, large variations in forest growth and carbon sequestration have been observed 
across short  distances2,3. Furthermore, previous studies have identified topographic position as a key factor for 
the variation in soil moisture conditions, which regulate soil development, nutrient accumulation, and vegetation 
 patterns4–7. Therefore, on the local landscape scale—where climate drivers such as temperature and precipitation 
can be considered constant—the topographic position at a specific location may largely affect the forest growth 
potential as a result of the differences in accumulated water surrounding  areas8.

Site quality is the combination of the physical and biological factors of a geographical location or site. Site 
quality is inherent to the site, but may be influenced by management or e.g. climate  change9. Site quality can be 
used to describe tree growth potential at a specific site. The fraction of a site’s growth potential that is realised by 
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trees to produce a certain amount of volume is often quantitatively expressed as site productivity. This type of 
information is critical for forest management planning as it provides the context for projecting forest production 
over a certain  period10 and supports decision-making concerning both conservation and restoration  efforts11. 
As such, landscape-scale information on the variation in forest site productivity can significantly improve forest 
 management12 and enhance understanding of which biotic factors influence forest growth within the landscape.

In even-age stands, the relationship between tree height and age of a given species is closely related to the 
capacity of the site to produce woody  biomass13. Therefore, site index, which is defined as the expected height of 
the dominant trees at a reference age is a commonly used indicator for site productivity. In Sweden, site index is 
generally estimated using two main methods: (1) by height development curves and (2) by site factors. Method 
1 uses the height and age of the dominant trees (i.e., the 100 largest trees in diameter per hectare) to estimate 
the expected height at a reference age (e.g. 100 years for Scots pine—Pinus sylvestris L. and Norway spruce—
Picea abies (L.) H. Karst, and 50 years for birch—Betula pendula Roth. and Betula pubescens Ehrh.)10,14,15. This 
method of estimating site index is denoted as SIH. The requirement of information about dominant height and 
age means that the method cannot be applied to all forest lands in Sweden (e.g., after clear-cut or thinning from 
above). Therefore site index is often assessed using method 2, which is based on a combination of site factors 
including climate, field vegetation, location and soil  properties16. This method of estimating site index is denoted 
as SIS. SIS, although age-independent, is in comparison to SIH found to be lower in accuracy (~ 4 m). Using the 
abovementioned methods for landscape-scale assessment of site quality poses several challenges because the 
methods require homogeneous stand conditions (i.e., the methods are age-and/or species-dependent), commonly 
not available on the landscape scale. Furthermore, a major limitation of both methods is that they are limited 
to fixed sample plots or field registers, which effectively constrains the potential landscape-wide extrapolation. 
Hence, an approach that is age-and species-independent has the potential to provide unbiased assessments of 
the variation in site productivity across a broader  scale17.

When two measurements in time are available, age-independent difference equations have satisfactorily been 
used to model site productivity. For example, Tomé et al.17 developed age-independent difference equations for 
both dominant height (Eucalyptus globulus Labill.) and DBH (Quercus suber L.) growth in Portugal by reformu-
lating well-established theoretical growth functions. This approach provides a possibility for assessing the vari-
ation in forest growth potential when age is unknown, in some cases even with higher accuracy in comparison 
to age-dependent  methods18. Furthermore, this approach facilitates landscape scale assessment of the variation 
in forest productivity using remote sensing when two measurements in time are available.

Remote sensing, particularly airborne laser scanning (ALS), has rapidly advanced during the last decade. 
The use of ALS in resolving the three-dimensional properties of forest vegetation structure has shown great 
potential for measuring and estimating key attributes, such as forest growth and site productivity, at the land-
scape  scale19–22. Furthermore, bi-temporal ALS data can be highly beneficial as this information can be used to 
reduce uncertainties related to disturbance from management (e.g., thinning, clear-cutting, etc.) and facilitates 
the precise estimation of site productivity through the added information of growth between  periods23. In 
parallel with the developments of high resolution remote sensing for measuring forest attributes, ALS data has 
massively increased the resolution of topographical information and has become an essential tool for modelling 
soil moisture conditions on a landscape  scale24. Landscape scale information of environmental factors such as 
soil moisture, provides large opportunities to study its effect on site quality. For example, Mohamedou et al.25 
demonstrated how modelling soil moisture conditions based on terrain indices can increase the accuracy of site 
productivity estimates in boreal forests.

At present, landscape assessments of the variation in site quality and its relation to environmental drivers 
are rare, in particular across small landscapes. Within smaller spatial scales, certain environmental factors, 
and the interactions among them, remain constant, allowing researchers to concentrate on a specific subset of 
environmental drivers. Studying how variation in soil moisture conditions influences site quality may provide 
important insights into how environmental drivers affect forest growth, as well as enhance our ability to predict 
where water availability will limit tree growth potential. This type of knowledge is highly relevant for the scal-
ing of forest ecosystem processes and development of sustainable forest management approaches in the future. 
Unfortunately, datasets appropriate for site quality estimation across smaller landscapes are rare. In the present 
study, we bridge this gap by using high-resolution, bi-temporal forest growth data to assess site quality on a 
landscape scale, information which is then used to investigate how site quality is related to topography-derived 
soil moisture conditions.

The presented research was conducted to test the following hypotheses: (1) spatial variation in soil moisture 
drives landscape-level variation in site quality; and (2) areas with intermediate soil moisture conditions demon-
strate the highest potential forest production. To test these hypotheses, we first developed an age-independent 
estimate of site quality based on repeated forest surveys (2014–2019) with a 5 year study period. In the second 
step, site quality was estimated by using bi-temporal ALS data from the previously fitted site quality model. 
Thereafter, site quality was evaluated on plot and landscape level under differing soil moisture conditions. Finally, 
we discuss how the obtained results provide evidence for the connection between soil moisture conditions and 
forest production in a managed, heterogeneous boreal landscape.

Methods
The study approach was generally centred on analysing the variation in site quality using soil moisture condi-
tions. The estimation of site quality was based on the principle of age-independent difference equations using 
two measurements in time of Lorey’s mean height. The approach for site quality estimation was carried out in 
three main steps: (1) global parameters were estimated using a difference equation adjusted for relative height 
from field measurements. In the second step (2) we reformulated the fitted equation to estimate plot specific 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10611  | https://doi.org/10.1038/s41598-024-61098-z

www.nature.com/scientificreports/

site quality estimates. In step (3), landscape estimation of site quality was made using the model from step (2) 
and repeated measurements from ALS as input data. Finally, the variation in estimated site quality for both on 
a plot and landscape scale was analysed in context of soil moisture conditions obtained from field survey and 
map predictions.

Site description
The study was carried out in the Krycklan Catchment  Study26 which is located in northern Sweden (64° 14′ N, 
19° 46′ E) which covers a 68  km2. The area consists of a managed forest landscape with a mosaic of wetlands and 
lakes, typical for the region. The mean annual temperature of the area is 2.4 °C, with a mean annual precipita-
tion of 636 mm  year−1 based on 30 years of data (1991–2021). The catchment has a gently undulating terrain, 
with elevations ranging from 127 to 372 m above sea level. The upper parts of the catchment are dominated by 
unsorted sediments, while glaciofluvial sorted sediments are common in the lower parts. The forest soils are 
predominantly iron podzols. Forest cover 87% of the area and is dominated by Scots pine (Pinus sylvestris) (63%) 
and Norway spruce (Picea abies) (26%), with scattered occurrence of deciduous species consisting mainly of birch 
(Betula pendula and Betula pubescens). Since 1922, approximately 25% of the catchment has been set aside for 
forest research and 1% is protected as nature reserves. Ownership of the remaining area is divided among forest 
companies and private owners. Forests in non-protected areas are managed by conventional rotation forestry and 
are predominantly even-aged, artificially regenerated, and thinned. Therefore, the area has evolved into a mosaic 
of stands of different ages, basal area and stocks (Table 1). The field layer vegetation is dominated by ericaceous 
shrubs (Vaccinium spp.) such as bilberry and lingonberry on moss mats of splendid feather moss (Hylocomium 
splendens) and red-stemmed feather moss (Pleurozium schreberi).

Field data
In 2014, a survey grid covering the entire catchment area was established; this grid comprises of > 500 plots 
(radius: 10 m, area: 314.5  m2) that are spaced 350 × 350 m apart (Fig. 1). The plot locations were allocated using 
a randomly chosen origin, which was oriented along the coordinate axis of the SWEREF 99 TM projection. 

Table 1.  Descriptive statistics of plot-level data from the Krycklan forest survey 2014 (n = 484). 1 Stand age 
(i.e., number of years since stand establishment) was determined for each sample plot as the basal area-
weighted mean age obtained by coring 8–10 dominant trees outside each sample plot.

Lorey’s mean height (m) Stand  age1 Basal area  (m2) Volume  (m3  ha−1)

Min 0 0 0 0

Median 13 64 19 129

Mean 12 69 18 139

Max 26 200 63 721

Figure 1.  Map of the Krycklan catchment and the location of the 337 survey plots (350 × 350 m square grid). 
The map was created using ArcGIS Pro (version 3.0.2).
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Accurate centre positions for each plot were determined using differentially-corrected GPS measurements, which 
were obtained with a Trimble GeoXTR receiver and the SWEPOS real-time differential correction service. A 
forest survey was conducted in the late fall and early spring of the 2014 and 2019 growing seasons. All trees with 
a diameter at breast height (DBH, 1.3 m) greater than 4 cm were measured at each plot. To reduce the labour 
necessary for surveying, the plot radius was reduced from 10 to 5 m for stands with a high stem density (e.g., 
regenerating or young forests). For all measured trees, DBH, species, and tree status (live or dead) was recorded. 
Tree height was measured for subjectively selected undamaged sub-samples of at least three trees of each species 
with a laser-guided hypsometer selected to capture tree size variation in DBH for each species. The selection of 
sample trees was made independently at each survey occasion. We fitted a mixed-effects model with plot-level 
random effects, where the dependent variable was the height of the measured trees and the independent variable 
was their DBH. We then estimated the height of the remaining trees using these models, followed by calculating 
the plot Lorey’s mean height (basal area weighted mean height). Plots without measured trees such as clear-cut 
areas, treeless mires were removed. In addition plots with a decrease in Lorey’s mean height between the two 
observations were excluded, which could be caused by management, natural disturbance or the independent 
selection of sample trees at each survey occasion . After this exclusion, our survey data encompassed a total of 337 
survey plots, each with consecutive measurements of Lorey’s mean height. In addition to the tree measurements, 
the plots were classified into soil moisture classes (dry, mesic, mesic-moist, moist, and wet) based on an estima-
tion of each plot’s average depth to groundwater level during the vegetation period; these estimates were based 
on the position of each plot in the landscape and vegetation patterns as per protocols of the Swedish National 
Forest  Inventory27. The soil types for 315 of the survey plots were determined in a soil survey completed between 
2019 and  202028 according to World Reference Base for Soil Resources (WRB) guidelines.

ALS data
Airborne Laser scanning (ALS) covering the entire study area was performed adjacent to both forest survey 
campaigns (Table 2.). In August 2015, the study area was scanned using an Optech Titan X sensor (flight height: 
1000 m) to yield an average point density of 20 points per  m2. The sensor scanned the area using three specific 
wavelengths, e.g., 532 nm (green), 1064 (NIR), and 1550 nm (SWIR). At the end of June 2019, the area was 
scanned using a Riegl VQ-1560i-DW sensor at wavelengths of 532 nm (green) and 1064 (NIR); this yielded an 
average point density of 20 points per  m226.

The raw ALS point clouds were then processed by classifying point returns as ground, vegetation, unclassi-
fied, and noise. This enabled the generation of a Digital Elevation Model (DEM) to which all of the ALS points 
were normalised. The point returns were aggregated to 10 × 10 m metrics using CloudMetrics Fusion  software29. 
Outlier assessments, carried out using bivariate scatterplots, were performed to examine the relationship between 
field measurements of Lorey’s mean height and the 95th percentile height of laser returns (P95) from two scan-
nings. Observations with a height difference > 5 m between the field measured Lorey’s mean height and P95 were 
excluded because these observations were considered to represent instances in which silvicultural practices, such 
as thinning or clearcutting had been performed between the scanning and field measurements. The number of 
plots excluded due to this discrepancy was 38 in 2014 and 25 plots in 2019.

An area-based approach was used to obtain wall-to-wall coverage of Lorey’s mean height across the entire 
study  area30. In the first step, the observed Lorey’s mean height from the geo-referenced survey plots at each 
survey occasion was regressed on the ALS metrics from the corresponding ALS scanning. In the second step, 
the models were applied over tessellations of individual grid cells to generate wall-to-wall estimates of Lorey’s 
mean height at time of each survey occasion (2014 and 2019). We tested different predictive models using vari-
ous combinations of commonly used ALS metrics related to height and  density23,31. The final predictive model 
chosen for each year was formulated as a linear regression with the same independent variables which included 
P95 and the standard derivation of height (heightStdDev). Both models showed high accuracy, with the residual 
standard error (RSE) falling below 1.1 m for both the 2014 and 2019 (Table 3). The estimations of Lorey’s mean 
height predicted from the individual models at each survey year, corresponded well to the field measurements 
(n = 337) (Fig. 2).

Site quality estimate
This study required an age-independent estimation of site quality to avoid the limitations of the commonly used 
‘site index’, which requires inputs such as the ages and heights of dominant trees or, alternatively, vegetation 
type and site properties. A mean height growth model with a sigmoidal shape will involve an asymptote and a 

Table 2.  ALS data specifications.

2015 2019

Time period 2015-08-23 2019-06-27

Season Leaf on Leaf on

Instrument Optech Titan X Riegl VQ-1560i-DW

Flying height 1000 m 1000 m

Measured wavelengths 532 nm (green), 1064 (NIR), and 1550 nm(SWIR) 532 nm (green), 1064 (NIR)

Point density 20 points/m2 20 points/m2
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shape parameter describing how the asymptote is reached; as such, an estimator of site quality can be deduced 
by expressing one of the parameters as a function of an un-observed site quality. The Richard’s growth model is 
suitable for this purpose as it was empirically derived from tree physiology, has desirable properties, and has been 
widely used in forest growth  analyses32,33. We focused on the age-independent difference formulation (Eq. 1) of 
the Richard’s  model34 presented by Tomé et al.17 to derive the site quality estimate:

where Y is Lorey’s mean height in metres, A is the asymptote/maximum height (m) when time/age approaches 
infinity, k is a parameter related to the growth rate, m is a shape parameter related to the point of inflection, and 
a is the number of periods. The generalised model did not consider tree species. This age-independent difference 
formula can be used to model height growth for the estimation of site quality when two successive measurements 
are available; this includes the assumption that the growth function passes through the two height measurements 
in both survey periods. In Eq. 1, the parameter A is most often the parameter that is most strongly related to 
site  quality23, as well as easy to interpret because it is expressed in the same dimension as the response variable, 
height. The k parameter can also be expressed as a measure of relative height growth from the field mean height 
measurements at time i and i + a, and a global parameter b:

Equation (2) was substituted into Eq. (1) to obtain estimates of the global parameters m and b. The param-
eters were estimated using generalised nonlinear least squares in the R  Environment35. To derive plot-specific 
site quality estimates (Ao), Eqs. (1) and (2) were algebraically reformulated (Eq. 3) as a function of the height 
measurements at times 1 and 2 (corresponding to the survey periods 2015 and 2019, respectively) and the global 
parameters m and b as:

(1)Yi+a = A

{

1− e
−ka

[

1−

(

Yi

A

)m]}
1

m

(2)k = b ∗

(

Yi+a

Yi

)

Table 3.  Results from linear regression predicting Lorey’s mean height for 2014 and 2019 using the area-based 
method.

Year Model Adj R2 RSE (m)

2014 Height = β0 + β1(P95) + β2(heightStdDev) + β3(P95 * heightStdDev) 0.96 1.05

2019 Height = β0 + β1(P95) + β2(heightStdDev) + β3(P95*heightStdDev) 0.95 1.03

Figure 2.  Plots illustrating the observed vs. predicted Lorey’s mean tree heights from forest surveys conducted 
in 2014 (a) and 2019 (b).
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Landscape site quality estimate
We used Eq. (3) to estimate the site quality parameter (Ao) to describe the expected maximum height over the 
entire study area based on the ALS data, more specifically, Lorey’s mean heights from the bi-temporal ALS data. 
We masked roads, railroads, and powerlines to reduce noise. In addition, we masked clear-cuts from 2000 to 
2020 based on data from the Swedish Forest Agency.

Auxiliary data
To investigate variation in site quality within the study area, environmental variables describing the site proper-
ties were obtained for the 337 plots and on the landscape level. Soil moisture conditions were extracted from 
the continuous SLU (Swedish University of Agricultural Science) soil moisture map that describes variation in 
soil moisture conditions across  Sweden24. The map was produced using machine learning, more specifically, 
by combining geographically mapped information, e.g., various ALS-derived terrain indices, climate data, and 
quaternary deposit information. The most important predictors of the developed soil moisture model was the 
Depth to water index (DTW), the Topographic wetness index (TWI), and mapped information of wetlands. The 
training and validation data sets included almost 20,000 survey plots with soil moisture classifications across 
Sweden, and the final mapped information expresses the probability that a 2 × 2 m pixel is classified as wet 
(0–100%). Ågren et al.24 previously used the survey plots included in this study as an independent validation 
dataset. For the present study, the 2 × 2 m resolution available in the SLU map was resampled to a 10 × 10 m grid 
using bilinear interpolation to match both the resolution of the field plots and the ALS metrics over the study area.

Statistical analyses
After assessing the spatial autocorrelation of plots using a semivariogram (Fig. S1), we concluded that each plot 
could be considered as an independent observation. To address the first hypothesis, i.e., that soil moisture drives 
variation in site quality at the landscape scale, we used second-order polynomial regression to examine the 
relationship between site quality and modelled soil moisture. To address the second hypothesis, we performed a 
non-parametric Kruskal–Wallis  test36, followed by a Dunn-Bonferoni  test37, to test for significant differences in 
estimated site quality between pairs with different soil moisture classifications, soil types and dominating species. 
The Kruskal–Wallis test was chosen because not all of the groups fulfilled the assumption of a normal distribution 
and the presence of differences in sample  sizes38. All of the statistical analyses were conducted using R  software35.

Results
The growth in tree height between the two surveys for individual survey plots ranged from 0 to 4.8 m, with a 
mean of 0.8 m; the median relative height growth was 6%. We fitted the age-independent difference equation 
(Eq. 1) on the complete dataset (n = 337 field plots) using generalised nonlinear least squares to obtain estimates 
of the global parameters, denoted as m, b and Aglobal (Table 4). The overall model was significant and showed a 
good fit, with a residual standard error of 0.41 m. In addition, the model errors did not show any obvious signs 
of heteroscedasticity (Fig. 3).

The estimated global parameters m and b were used to estimate site quality (Ao, or the expected maximum 
height) for each survey plot using the algebraic solution for Ao (Eq. 3). The estimated site quality (Ao) had a mean 
of 25.9 m and ranged from 7.2 to 67.3 m (Fig. 4).

We found significant differences in site quality among plots with different classified soil moisture condi-
tions (Kruskal–Wallis chi-squared = 24.633, df = 4, p-value < 0.001), with the highest potential forest production 
found in areas with intermediate soil moisture conditions (Fig. 5a). Moreover, mesic sites showed significantly 
higher site quality in comparison to moist and wet soil moisture classes. Significant differences in site quality 
were also observed for plots characterised by different soil types (Kruskal–Wallis chi-squared = 29.464, df = 5, 
p-value < 0.001), with histosols showing significantly lower site quality values in comparison to arenosols, pod-
zols, and regosols in the post-hoc Dunn-Bonferoni test (Fig. 5b).

Equation (3), when applied to the landscape level, used bi-temporal ALS estimates of mean height to com-
pute the expected site quality (i.e., maximum height) for each pixel (10 × 10 m spatial resolution). Estimated site 
quality using bi-temporal ALS data demonstrated a near-normal distribution that included a similar range as the 
estimated site quality using field data. The visual comparison of modelled soil moisture and site quality revealed 
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Table 4.  Estimated parameters of model 1, based on the field data.

Parameter Estimate Std. error t-value

Fit statistics

AIC BIC logLink RMSE(m)

Aglobal 26.99 1.70 15.88 576.85 592.13 − 284.43 0.41

b 0.021 0.00 6.24

m 0.57 0.10 5.53



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10611  | https://doi.org/10.1038/s41598-024-61098-z

www.nature.com/scientificreports/

noticeable patterns (Fig. 6). For example, areas with low site quality estimates generally showed rather wet soil 
moisture conditions, and thus, were located in areas dominated by peat soils. On the other hand, some areas 
showed higher site quality in comparison to neighbouring areas, in some cases likely associated with different 
dominating species. For example, clear differences in site quality could be observed within an experimental trial 
with blocks of different tree species (Fig. 6b). Stand edges could also be observed where younger stands showed 
higher site quality in comparison to mature stands. An effect of tree species was in line with the observations 
from field data plot scale, where plots dominated by Pinus contorta showed a significantly higher mean site quality 
than plots dominated by other tree species (Fig. S2).

At the landscape scale, the relationship between site quality and the modelled soil moisture conditions (the 
probability of a point being classified as wet) was described by a second-degree polynomial regression model 
(R2 = 0.11, p-value < 0.001, F-stat = 31,380); indicating that site quality decreases as soil moisture increases. How-
ever, the estimated site quality showed large variation in relation to the predicted soil moisture condition (Fig. 7).

Figure 3.  Plot of the predicted vs. observed Lorey’s mean height values (a), and residuals from the predicted 
model in comparison to observed values (red line) (b).

Figure 4.  Histogram of estimated site quality (A0). Note: all observations over 50 m were placed in the 48–50 m 
class.
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Discussion
Understanding the factors that explain variations in site quality across a certain landscape is a tremendous sci-
entific challenge due to the complex interactions between different environmental drivers varying in importance 
across scales. This study focused on a 68  km2 meso-scale heterogeneous landscape, a decision which effectively 
controlled for dominant environmental drivers that are present on the national and regional levels, including 
climatic gradients. We estimated forest site quality across the Krycklan catchment by using an age-independent 
difference approach based on repeated and extensive field measurements of mean height. To estimate site quality 

Figure 5.  The relationship between site quality and (a) soil moisture conditions and (b) soil type. Lowercase 
letters show the results from the corresponding Dunn-Bonferoni test.

Figure 6.  Predicted site quality across the Krycklan catchment, based on bi-temporal ALS data (a). Predictions 
of site quality in a smaller area (b), with the SLU soil moisture map over the same area (c). White areas are 
masked areas such as clear-cuts, roads. agricultural fields, or and power lines. An experimental trials of different 
tree species bordered with red (black in c). The map was created using ArcGIS Pro (version 3.0.2), https:// www. 
esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew.

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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over the entire landscape, we applied our age-independent model to the available bi-temporal ALS data, which 
had been obtained in close succession to the field plot surveys. The landscape estimates of site quality were 
compared to readily available auxiliary data to assess the effects of soil moisture conditions on forest production 
potential in the study area.

The use of bi-temporal ALS data to estimate forest growth and site quality has gained momentum in recent 
years, and has already proven successful in multiple previous studies using varying  approaches19,39,40. Previous 
researchers have emphasised that age-independent models can rely on ALS data to yield landscape assessments 
of site quality across various time periods without the constraint of age-specific information for  trees22,23,39. For 
instance, landscape estimates of site productivity, commonly presented using the site index, become challenging 
when information on forest age, species distribution, or top/dominant height or site properties is limited to field 
plots. Furthermore, the site index can only be directly estimated if the stand meets standard assumptions such 
as level of stocking, species composition, and that the stand history has not excessively affected the development 
of the dominant/co-dominant tree species.

The methodological differences between the present study and previous research mean that direct compari-
sons of our results to what has been reported in prior years are challenging. However, it is possible to compare 
the results obtained from our age-independent model for tree height, which was used to estimate the global 
parameters and derive the site-independent site quality estimates. The age independent height model predict-
ing height at time two, showed satisfactory accuracy with a RMSE of 0.41 m (Table 4). This is in line with the 
model performance (RMSE value of 0.64 m) reported for an age-dependent Chapman-Richard function with 
RMSE of 0.64  m41.

The site quality estimates reported in this study represent the site-specific maximum attainable Lorey’s mean 
height when time/age approaches infinity. This theoretical value cannot be validated within the boundaries of 
this study and is limited to be used to compare differences in site quality between sites. At the same time, the 
site quality estimates showed a large range from 7 to > 50 m, where especially the values in the highest can be 
considered to be unreasonable. Furthermore, the current study was limited to information from only two field 
survey inventories that were separated by a period of 5 years. This can be considered as a short growth period, 
and the two measurements may not include all of the information necessary to explain the variation in site qual-
ity, especially if the measurements do not contain the empirical asymptote. The study period in the presented 
research is far from the period needed to begin reaching the asymptote, that is, the maximum value of the site 
quality parameter. It is also important to note that the use of tree height (ascertained through the height-age site 
index approach) does not fully explain between-site differences in productivity. In other words, even if we have 
a certain site index, there may be significant variation in the woody volume of the plot due to differences in car-
rying capacity, species composition, and site  properties10,13,42,43. Thus, we postulate that additional information to 
height differences, such as species, basal area, or volume, may improve both site index or site quality  estimates13. 
However, such information—especially volume—is not as readily available as tree height, which is available for 
the whole of Sweden due to enhanced forest inventories. Another advantage of using height is that this metric, in 

Figure 7.  The modelled polynomial relationship between site quality (A0) and soil moisture across the entire 
study area. The plot displays a random sample of 5000 (10%) raster cells, coloured corresponding to the SLU 
soil moisture map (Fig. 6c). The regression line is shown in red, with the dashed lines representing the 95% 
prediction intervals. The modelled soil moisture, shown as a percentage, denotes the probability of the point 
being predicted as wet rather than the volumetric soil water content.
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comparison to basal area and volume, is not heavily affected by management and/or stand density. Nevertheless, 
a previous study based on bi-temporal ALS data reported stand density effects on P. sylvestris height growth in 
highly productive  stands44.

After the site quality model had been fitted to the data set describing the survey plots (Eq. 3), it was then 
applied to the bi-temporal ALS data to compute the expectedsite quality for 10 × 10 m raster cells of the study 
area. The different laser scanners used in the 2015 and 2019 surveys could have caused potential errors in the 
pixel-level estimations of site quality (Table 2). However, we would like to argue that this potential source of 
error is small due the two separate calibration for each scanning based on field measured Lorey’s mean height. 
Other potential sources of errors in the site quality estimates include the unavailability of tree species informa-
tion at the landscape level, along with the effects of forest management. The magnitude of the effects of these 
error sources warrants further investigation. Another source of uncertainty is associated to a short study period 
in combination with the low productive forests in the region, which may not have been sufficient to capture 
the variation in site quality. The average field measured Lorey’s mean height difference was 0.8 m in the studied 
period. Ground-based tree-height measurements of pine and spruce involve a mean error of 0.3 and 0.1 m, 
 respectively45, which may limit the observation of between-site differences. Gathering landscape-level species 
information has the potential to improve site quality estimates, which was apparent in the higher estimates of 
site quality in an experimental tree species trial (Fig. 6a). Furthermore, the observed stand edges with higher 
site quality associated to younger stands may be an effect of a higher proportion of birch, which is a fast grow-
ing pioneer  species46. Previous studies have found that dividing the study area into strata based on tree species 
improves prediction  accuracy47.

The reported results were consistent with our hypothesis in that site quality decrease in high soil moisture 
conditions. Histosols in this region are associated with saturated soil conditions and showed significantly lower 
site quality in comparison to other soil types. Similar findings for soil moisture conditions and soil types have 
been observed in studies of the relationship between normalised mean annual increment in relation to soil 
properties across  Sweden48. Previous studies have also proven the utility of soil moisture maps in comparison to 
other terrain  indices49, as well as the ability to predicting thick organic soil layers based on soil  moisture50. Lower 
site quality is expected in these areas because the saturated soil conditions decrease tree  growth48,51. Notably, 
the modelled soil moisture was not able to explain the variation in soil quality among drier areas. We suspect 
several reasons for this. Firstly, the soil moisture map used in this study was create to differentiate between the 
soil moisture classes, e.g., dry (dry and mesic) and wet (mesic-moist, moist and wet); this may not adequately 
capture the variation within these groups observed on plot level (Fig. 5)24. The use of remote sensing technolo-
gies in combination with additional auxiliary data is not a new phenomenon. When site index was modelled for 
Pinus pinaster Ait. stands in Spain, climate-related factors such as potential evapotranspiration, mean minimum 
temperature, and mean precipitation were among the most important variables that explained variation in a site-
specific quality  parameter21. Using terrain indices to model soil moisture conditions has successfully improved 
predictions of forest growth in numerous  studies25,51.

The variation of site quality is not only driven by soil moisture conditions, but rather the effect of complex 
relationships between various environmental drivers. However, our study provides a unique insight into how soil 
moisture conditions drive site quality variation on a local landscape. To better understand the landscape-scale 
variation of site quality, the effects of additional biological and physical factors need to be studied. For example, 
soil physical and chemical properties have a large effect on site quality, however such information is challenging 
to extrapolate across a landscape scale.

Conclusion
This study presents a landscape scale perspective on the relationship between forest site quality and soil moisture 
conditions within a managed boreal forest landscape. We estimated site quality across the entire study area using 
an age-independent difference height growth model based on repeated forest surveys and ALS scanning. Evalu-
ation of site quality estimates showed lowest site quality in areas with the highest soil moisture levels. Although 
substantial variation was observed for estimated site quality, there was no distinct trend that was indicative of 
increased site quality in areas with intermediate soil moisture conditions. Collectively, our results deepen our 
understanding of how certain soil moisture conditions relates to growth potential across a heterogeneous boreal 
landscape.

Data availability
The dataset generated during the current study is available from the corresponding author on reasonable request.
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