Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Reproducible mass spectrometry data processing and compound annotation in MZmine 3

Abstract

Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography–MS, gas chromatography–MS and MS–imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography–(IMS–)MS, gas chromatography–MS and (IMS–)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.

Key points

  • MZmine is a program designed to process data from untargeted mass spectrometry (MS) experiments acquired in data-dependent acquisition mode; specifically, collision-induced dissociation and higher-energy collisional dissociation.

  • This protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by instrumental setups: liquid chromatography–(ion mobility spectrometry–)MS, gas chromatography–MS and (ion mobility spectrometry–)MS imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the data processing workflows in MZmine.
Fig. 2: A schematic representation of the LC(–IMS)–MS workflow described in Procedure 1.
Fig. 3: An overview of popular modules and third-party tools for feature annotation integrated with MZmine.
Fig. 4: Feature grouping by feature shape correlation.
Fig. 5: IIN annotation refinement.
Fig. 6: A schematic representation of the GC–EI–MS workflow described in Procedure 2.
Fig. 7: The S/N threshold parameter of ADAP resolver.
Fig. 8: A schematic representation of the MS imaging and IMS–MS imaging workflows described in Procedure 3.
Fig. 9: A screenshot of a feature list visualized in MZmine.

Similar content being viewed by others

Data availability

All example datasets used in this protocol are publicly available through the GNPS-MassIVE, MetaboLights and Metabolomics Workbench repositories under the following accession numbers: MSV000091634, Procedure 1, LC–IMS–MS; ST000981, Procedure 2, GC–EI–MS; MSV000090328, Procedure 3, IMS–MS imaging; MSV000091642, lipid annotation (Procedure 1, Step 21), LC–IMS–MS; MTBLS265, export for statistics (Procedure 1, Step 25), LC–MS. The FBMN results can be accessed on GNPS at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ffd5aee568b54d9da1f3b771c459ebe5.

Code availability

The latest release of MZmine can be downloaded from https://www.mzmine.org. The complete source code is available at https://github.com/mzmine/mzmine3/ under the MIT licence. The MZmine documentation is hosted on GitHub and available at https://www.mzmine.org/documentation.

References

  1. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Müller, C., Binder, U., Bracher, F. & Giera, M. Antifungal drug testing by combining minimal inhibitory concentration testing with target identification by gas chromatography–mass spectrometry. Nat. Protoc. 12, 947–963 (2017).

    Article  PubMed  Google Scholar 

  4. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A. R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Chan, E. C. Y., Pasikanti, K. K. & Nicholson, J. K. Global urinary metabolic profiling procedures using gas chromatography–mass spectrometry. Nat. Protoc. 6, 1483–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. & Kell, D. B. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P. & Dorrestein, P. C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1, 1–20 (2017).

    Article  Google Scholar 

  8. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01690-2 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paglia, G., Smith, A. J. & Astarita, G. Ion mobility mass spectrometry in the omics era: challenges and opportunities for metabolomics and lipidomics. Mass Spectrom. Rev. https://doi.org/10.1002/mas.21686 (2021).

    Article  PubMed  Google Scholar 

  11. Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 11, 331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, H.-Y. et al. A practical guide to metabolomics software development. Anal. Chem. 93, 1912–1923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinforma. 9, 504 (2008).

    Article  Google Scholar 

  14. De Vijlder, T. et al. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: the practical art of structural elucidation. Mass Spectrom. Rev. 37, 607–629 (2018).

    Article  PubMed  Google Scholar 

  15. Korf, A., Jeck, V., Schmid, R., Helmer, P. O. & Hayen, H. Lipid species annotation at double bond position level with custom databases by extension of the MZmine 2 open-source software package. Anal. Chem. 91, 5098–5105 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    Article  PubMed  Google Scholar 

  17. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pluskal, T. et al. in Processing Metabolomics and Proteomics Data with Open Software 232–254 (Royal Society of Chemistry, 2020).

  19. Hammann, S., Korf, A., Bull, I. D., Hayen, H. & Cramp, L. J. E. Lipid profiling and analytical discrimination of seven cereals using high temperature gas chromatography coupled to high resolution quadrupole time-of-flight mass spectrometry. Food Chem. 282, 27–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Simon, C. et al. Mass difference matching unfolds hidden molecular structures of dissolved organic matter. Environ. Sci. Technol. 56, 11027–11040 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korf, A. et al. Digging deeper—a new data mining workflow for improved processing and interpretation of high resolution GC–Q-TOF MS data in archaeological research. Sci. Rep. 10, 767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brungs, C. et al. Tattoo pigment identification in inks and skin biopsies of adverse reactions by complementary elemental and molecular bioimaging with mass spectral library matching. Anal. Chem. 94, 3581–3589 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Wolf, C. et al. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization–mass spectrometry—tattoo pigment identification supported by trapped ion mobility spectrometry. Anal. Chim. Acta 1242, 340796 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Deutsch, E. W. Mass spectrometer output file format mzML. Methods Mol. Biol. 604, 319–331 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pedrioli, P. G. A. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Römpp, A. et al. imzML: imaging mass spectrometry markup language: a common data format for mass spectrometry imaging. Methods Mol. Biol. 696, 205–224 (2011).

    Article  PubMed  Google Scholar 

  27. Rew, R. & Davis, G. NetCDF: an interface for scientific data access. IEEE Comput. Graph. Appl. 10, 76–82 (1990).

    Article  Google Scholar 

  28. Lu, M., An, S., Wang, R., Wang, J. & Yu, C. Aird: a computation-oriented mass spectrometry data format enables a higher compression ratio and less decoding time. BMC Bioinforma. 23, 35 (2022).

    Article  Google Scholar 

  29. Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Röst, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016).

    Article  PubMed  Google Scholar 

  33. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirkwood, K. I. et al. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat. Protoc. 17, 2415–2430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barker, M. et al. Introducing the FAIR principles for research software. Sci. Data 9, 622 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Haug, K. et al. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41, D781–D786 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44, D463–D470 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17, 2534–2545 (2018).

    Article  CAS  Google Scholar 

  40. Whittemore, J. C., Stokes, J. E., Laia, N. L., Price, J. M. & Suchodolski, J. S. Short and long-term effects of a synbiotic on clinical signs, the fecal microbiome, and metabolomic profiles in healthy research cats receiving clindamycin: a randomized, controlled trial. PeerJ 6, e5130 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaleckis, R., Murakami, I., Takada, J., Kondoh, H. & Yanagida, M. Individual variability in human blood metabolites identifies age-related differences. Proc. Natl Acad. Sci. USA 113, 4252–4259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, R., Ventura, D. & Prince, J. T. LC–MS alignment in theory and practice: a comprehensive algorithmic review. Brief. Bioinform. 16, 104–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Pluskal, T., Uehara, T. & Yanagida, M. Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Anal. Chem. 84, 4396–4403 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Renai, L. et al. Combining feature-based molecular networking and contextual mass spectral libraries to decipher nutrimetabolomics profiles. Metabolites 12, 1005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bazsó, F. L. et al. Quantitative comparison of tandem mass spectra obtained on various instruments. J. Am. Soc. Mass Spectrom. 27, 1357–1365 (2016).

    Article  PubMed  Google Scholar 

  47. Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Olivon, F. et al. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal. Chem. 90, 13900–13908 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Elie, N., Santerre, C. & Touboul, D. Generation of a molecular network from electron ionization mass spectrometry data by combining MZmine2 and MetGem software. Anal. Chem. 91, 11489–11492 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zdouc, M. M. et al. FERMO: a dashboard for streamlined rationalized prioritization of molecular features from mass spectrometry data. Preprint at bioRxiv https://doi.org/10.1101/2022.12.21.521422 (2022).

  51. Schmid, R. et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. 12, 3832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pakkir Shah, A. K. The hitchhiker’s guide to statistical analysis of feature-based molecular networks from non-targeted metabolomics data. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-wwbt0 (2023).

  53. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49, W388–W396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pang, Z. et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Myers, O. D., Sumner, S. J., Li, S., Barnes, S. & Du, X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal. Chem. 89, 8696–8703 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Du, X., Smirnov, A., Pluskal, T., Jia, W. & Sumner, S. in Computational Methods and Data Analysis for Metabolomics (ed. Li, S.) 25–48 (Springer, 2020).

  57. Smirnov, A. et al. adap-gc 4.0: application of clustering-assisted multivariate curve resolution to spectral deconvolution of gas chromatography–mass spectrometry metabolomics data. Anal. Chem. 91, 9069–9077 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Lerno, L. A. Jr, German, J. B. & Lebrilla, C. B. Method for the identification of lipid classes based on referenced Kendrick mass analysis. Anal. Chem. 82, 4236–4245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sleno, L. The use of mass defect in modern mass spectrometry. J. Mass Spectrom. 47, 226–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Helmer, P. O., Korf, A. & Hayen, H. Analysis of artificially oxidized cardiolipins and monolyso-cardiolipins via liquid chromatography/high-resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. Rapid Commun. Mass Spectrom. 34, e8566 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Müller, W. H. et al. Dual-polarity SALDI FT–ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Anal. Bioanal. Chem. 413, 2821–2830 (2021).

    Article  PubMed  Google Scholar 

  63. Korf, A. et al. Three-dimensional Kendrick mass plots as a tool for graphical lipid identification. Rapid Commun. Mass Spectrom. 32, 981–991 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Korf, A., Fouquet, T., Schmid, R., Hayen, H. & Hagenhoff, S. Expanding the Kendrick mass plot toolbox in MZmine 2 to enable rapid polymer characterization in liquid chromatography−mass spectrometry data sets. Anal. Chem. 92, 628–633 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Beniddir, M. A. et al. Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches. Nat. Prod. Rep. 38, 1967–1993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0740-8 (2020).

    Article  PubMed  Google Scholar 

  68. Wang, M. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. da Silva, R. R. et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.P. is supported by the Czech Science Foundation (GA CR) grant 21-11563M and by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 891397. T.D. is supported by the European Regional Development Fund, Programme Johannes Amos Comenius project ‘IOCB MSCA PF Mobility’ no. CZ.02.01.01/00/22_010/0002733. C.B. is supported by the Czech Academy of Sciences Program to Support Prospective Human Resources. A.S. and X.D. are supported by the National Institutes of Health grant U01CA235507. P.C.D. is supported by R01GM107550, R03OD034493, R01DK136117 and NSF 2152526. We thank F. Rooks and M. FitzGerald for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Design and oversight of the project performed by S.H., T.D., A.S., R.S. and T.P. Online MZmine documentation performed by S.H., T.D., O.M., C.B., A.K., R.S. Testing the workflows described and improving the descriptions performed by S.H., T.D., O.M., C.B., A.K., J.D.S., P.S., N.D., L.-F.N., T.H., M.O., U.K., P.C.D., D.P., X.D., J.J.J.vdH. and R.S.

Corresponding authors

Correspondence to Robin Schmid or Tomáš Pluskal.

Ethics declarations

Competing interests

P.C.D. served as a consultant for DSM Animal Health in 2023, is an advisor and has equity in Cybele and is a co-founder, advisor and holds equity in Ometa, Enveda and Arome with prior approval by UC San Diego. J.J.J.vdH. is a member of the Scientific Advisory Board of NAICONS Srl., Milan, Italy, and consults for Corteva Agriscience, Indianapolis, IN, USA.

Peer review

Peer review information

Nature Protocols thanks Guowang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Schmid, R. et al. Nat. Biotechnol. 41, 447–449 (2023): https://doi.org/10.1038/s41587-023-01690-2

Schmid, R. et al. Nat. Commun. 12, 3832 (2021): https://doi.org/10.1038/s41467-021-23953-9

Heuckeroth, S. et al. Nat. Commun. 14, 7495 (2023): https://doi.org/10.1038/s41467-023-43298-9

Extended data

Extended Data Fig. 1 Screenshot of the batch mode dialogue box.

The current processing steps are displayed in the ‘Batch queue’ panel. Additional steps can be selected from the ‘Modules’ panel and included using the double-arrows buttons. The current batch file can be saved using the ‘Save’ button whereas other batch files can be imported using the ‘Load’ button. Some modules offer a ‘Show preview’ option that can be opened by ticking the corresponding checkbox. For the preview to work, data must be already imported in MZmine. The online documentation for each processing module can be opened using the ‘Help’ button.

Extended Data Fig. 2 Screenshot of the ‘Raw data overview’ module.

The module displays three panels: chromatogram panel (left), mass spectrum panel (right) and scan information panel (bottom panel), which contains information for every scan in the data file.

Extended Data Fig. 3 Screenshot of the interactive visualisation panel in the Local minimum resolver module.

Two subpanels are present: one for ‘noisy’ and one for ‘good’ EIC traces. The goal of the parameters optimization is to ensure detection of true features while minimising ‘noisy’ peaks to be retained as features. Feature lists and EIC traces to display can be chosen from the corresponding drop-down menus. Detected features are colour-filled and resolved peaks are shown in different colours.

Extended Data Fig. 4 Screenshot of the ‘Ion mobility raw data overview’ module.

a, A summed frame spectrum with a blue indicator at the selected m/z. b, A chromatogram plot showing the BPC (black) and EIC (blue) of the selected m/z. The blue indicator shows the RT of the selected frame. c, A total ion mobilogram of the selected frame. d, A mobility vs. m/z heatmap of the selected frame. e, An ion mobility trace of the selected m/z in RT and mobility dimensions.

Supplementary information

Reporting Summary

Supplementary Data 1

All batch files optimized for each example dataset and the corresponding data processing outputs (feature lists and MS2 spectral lists).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuckeroth, S., Damiani, T., Smirnov, A. et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00996-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research