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Unbiasing fermionic quantum Monte Carlo 
with a quantum computer

William J. Huggins1 ✉, Bryan A. O’Gorman2, Nicholas C. Rubin1, David R. Reichman3, 
Ryan Babbush1 & Joonho Lee1,3 ✉

Interacting many-electron problems pose some of the greatest computational 
challenges in science, with essential applications across many fields. The solutions to 
these problems will offer accurate predictions of chemical reactivity and kinetics, and 
other properties of quantum systems1–4. Fermionic quantum Monte Carlo (QMC) 
methods5,6, which use a statistical sampling of the ground state, are among the most 
powerful approaches to these problems. Controlling the fermionic sign problem with 
constraints ensures the efficiency of QMC at the expense of potentially significant 
biases owing to the limited flexibility of classical computation. Here we propose an 
approach that combines constrained QMC with quantum computation to reduce 
such biases. We implement our scheme experimentally using up to 16 qubits to unbias 
constrained QMC calculations performed on chemical systems with as many as 120 
orbitals. These experiments represent the largest chemistry simulations performed 
with the help of quantum computers, while achieving accuracy that is competitive 
with state-of-the-art classical methods without burdensome error mitigation. 
Compared with the popular variational quantum eigensolver7,8, our hybrid 
quantum-classical computational model offers an alternative path towards achieving 
a practical quantum advantage for the electronic structure problem without 
demanding exceedingly accurate preparation and measurement of the ground-state 
wavefunction.

The complexity of finding an accurate solution of the Schrödinger 
equation seemingly grows exponentially with the number of elec-
trons in the system. This fact has greatly hindered progress towards 
an efficient means of accurately calculating ground-state quantum 
mechanical properties of complex systems. Over the last century, sub-
stantial research effort has been devoted to the development of new 
algorithms for solution of this many-electron problem. At present, all 
available general-purpose methods can be grouped into two categories: 
(1) methods that scale exponentially with system size while yielding 
numerically exact answers, and (2) methods for which the cost scales 
polynomially with system size, but that are only approximate by con-
struction. Approaches in this second category are the only methods 
that can feasibly be applied to large systems at present. The accuracy 
of the solutions obtained by these methods is often unsatisfactory and 
is almost always difficult to assess.

Quantum computing has arisen as an alternative model for the 
calculation of quantum properties that may complement, and 
potentially surpass, classical methods in terms of efficiency9,10. 
Although the ultimate ambition of this field is to construct a univer-
sal fault-tolerant quantum computer11, the experimental devices 
of today are limited to noisy intermediate-scale quantum (NISQ) 
computers12. NISQ algorithms for the computation of ground states 
have largely centred around the variational quantum eigensolver 
(VQE) framework7,8, which necessitates coping with optimization 

difficulties, measurement overhead and circuit noise. As an alterna-
tive, algorithms based on imaginary-time evolution have been put 
forward, which, in principle, avoid the optimization problem13,14. 
However, because of the non-unitary nature of imaginary-time evolu-
tion, one must resort to heuristics to achieve reasonable scaling with 
system size. New strategies that avoid these limitations may help to 
enable the first practical quantum advantage in fermionic simulations.  
In this work, we propose and experimentally demonstrate a class 
of quantum-classical hybrid algorithms that offer a different route 
to addressing these challenges. We do not attempt to represent the 
ground-state wavefunction using our quantum processor, choosing 
instead to use it to guide a quantum Monte Carlo (QMC) calculation 
performed on a classical coprocessor. Using this approach, our experi-
mental demonstration surpasses the scale of previous experimental 
work on quantum simulation in chemistry15–17.

Theory and algorithms
QMC approaches5,6 target the exact ground-state wavefunction, Ψ0 , 
of a many-body Hamiltonian, Ĥ, via imaginary-time evolution of an 
initial state Φ0  with a non-zero overlap with Ψ0 :

Ψ Ψ τ Ψ τ Φ∝ lim ( ) , ( ) ≡ e , (1)
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where τ is imaginary time and τΨ( )  denotes the time-evolved wave-
function from Φ0  by τ (Fig. 1a). In QMC, the imaginary-time evolution 
in equation (1) is implemented stochastically, which can enable a poly-
nomial scaling algorithm to sample an estimate for the exact 
ground-state energy by avoiding the explicit storage of high-dimensional 
objects, such as Ĥ and Ψ0 . The ground-state energy, E E τ= ( = ∞)ground , 
is estimated from averaging a time series of E τ{ ( )}i( ) , given by a weighted 
average over M statistical samples,

∑E τ w τ E τ( ) = ( ) ( ), (2)
i

M

i
i

=1

( )

where E(i)(τ) is the ith statistical sample for the energy and wi(τ) is the 
corresponding normalized weight for that sample at imaginary time τ.  
Although formally exact, such a stochastic imaginary-time evolution 
algorithm will generically run into the fermionic sign problem18, which 
manifests as a result of alternating signs in the weights of each statisti-
cal sample used in equation (2). In the worst case, the fermionic sign 
problem causes the estimator of the energy in equation (2) to have 
exponentially large variance (Fig. 1b, top), necessitating that one aver-
ages exponentially many samples so as to obtain a target precision. 
Accordingly, exact, unbiased QMC approaches are only applicable to 
small systems19–21 or those lacking a sign problem22.

The sign problem can be controlled to give an estimator of the ground-
state energy with polynomially bound variance by imposing constraints 
on the imaginary-time evolution of each statistical sample represented 
by a trial wavefunction, ϕ τ| ( )⟩i . These constraints (which include prom-
inent examples such as the fixed node6,23 and phaseless approxima-
tions24,25) are imposed by demanding that the overlaps of the trial 
wavefunction (|Ψ ⟩⟩)T  (where T denotes trial) with the stochastic samples 

ϕ τ(| ( )⟩)i  remain positive during the imaginary-time propagation. 
Although constrained QMC calculations are typically much more accu-
rate than those using the bare trial wavefunction directly (Fig. 1b, 

bottom), the remaining bias of the constrained QMC results is wholly 
determined by the choice of the trial wavefunction. Imposing these 
constraints necessarily introduces a potentially significant bias in the 
final ground-state energy estimate, which can be removed in the limit 
that the trial wavefunction approaches the exact ground state. Alter-
natively, the bias can be removed by releasing the constraints during 
propagation, at the expense of suffering an uncontrolled sign problem26.

Classically, computationally tractable options for trial wavefunc-
tions are limited to states such as a single mean-field determinant (for 
example, a Hartree–Fock state), a linear combination of mean-field 
states, a simple form of the electron–electron pair (two-body) cor-
relator (usually called a Jastrow factor) applied to mean-field states or 
some other physically motivated transformations applied to mean-field 
states, such as backflow approaches27. On the other hand, any wavefunc-
tion that can be prepared with a quantum circuit is a candidate for a 
trial wavefunction on a quantum computer, including more general 
two-body correlators. These trial wavefunctions will be referred to as 
‘quantum’ trial wavefunctions.

At present, there is no efficient classical algorithm to estimate (to 
additive error) the overlap between ϕ τ| ( )⟩i  and various quantum trial 
wavefunctions |Ψ ⟩T , such as unitary coupled-cluster with singles and 
doubles28, qubit coupled-cluster methods29, wavefunctions con-
structed by adiabatic state preparation30 or the multiscale entangle-
ment renormalization ansatz31. This is true even when ϕ τ| ( )⟩i  is simply 
a computational basis state or a Slater determinant. As quantum com-
puters can efficiently approximate ϕ τ⟨Ψ | ( )⟩T i , there is a potential quan-
tum advantage in this task, as well as its particular use in QMC. This 
offers a different route towards quantum advantage in ground-state 
fermion simulations compared with VQE, which instead seeks an advan-
tage in the variational energy evaluation. We expand on this discussion 
of quantum advantage in Supplementary Section F.

Our quantum-classical hybrid QMC algorithm (QC-QMC) utilizes 
quantum trial wavefunctions while performing the majority of 
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Fig. 1 | Imaginary-time evolution, sign problem and our quantum-classical 
hybrid algorithm. a, Depiction of the imaginary-time evolution, which shows an 
exponential convergence to the ground state as a function of imaginary time, τ. 
b, Illustration of the fermionic sign problem. Exact deterministic imaginary-time 
evolution and an unconstrained QMC calculation, which is exact on average but 
has a signal-to-noise ratio that diverges with increasing τ due to the sign problem 
(top). Constrained QMC calculations with classical and quantum constraints. 
The use of quantum constraint helps to reduce the bias that is non-negligible 
when using the classical constraint (bottom). c, Overview of the QC-QMC 

algorithm. Stochastic wavefunction samples, represented as ϕ{| ⟩}i τ, are evolved 
in time along with associated weights {wi}τ. Throughout the time evolution, 
queries to the quantum processor about the overlap value between the quantum 
trial wavefunction |Ψ ⟩T  and a stochastic wavefunction sample ϕ{| ⟩}i τ are made 
while updating the gate parameters to describe ϕ{| ⟩}i τ. Our quantum processor 
uses N qubits to efficiently estimate the overlap, which is then used to evolve wi 
and to discard stochastic wavefunction samples with wi < 0. Finally, observables, 
such as E τ( ) , are computed on the classical computer using overlap queries to 
the quantum processor (Supplementary Section C).
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imaginary-time evolution on a classical computer, and is summarized 
in Fig. 1c. In essence, on a classical computer one performs imaginary-
time evolution for each wavefunction statistical sample, ϕ τ| ( )⟩i , and 
collects observables such as the ground-state energy estimate, E τ( )i( ) . 
During this procedure, a constraint associated with the quantum trial 
wavefunction is imposed to control the sign problem. To perform the 
constrained time evolution, the only quantity that needs to be calculated 
on the quantum computer is the overlap between the trial wavefunction, 
|Ψ ⟩T , and the statistical sample of the wavefunction at imaginary time 
τ, ϕ τ| ( )⟩i . Although our approach applies generally to any form of con-
strained QMC, here we discuss an experimental demonstration of the 
algorithm that uses an implementation of QMC known as auxiliary-field 
QMC (AFQMC), which will be referred to as QC-AFQMC (see Methods 
for more details). As a single determinant mean-field trial wavefunction 
is the most widely used classical form of the trial function for 
AFQMC owing to its efficiency, here we use ‘AFQMC’ to denote AFQMC 
with a mean-field trial wavefunction.

Discussion
As the first example, in Fig. 2 we illustrate the quantum primitive 
used to perform the experiment on an H4 molecule involving 8 qubits 
(see Methods for more details). Our eight spin-orbital quantum trial 
wavefunction consists of a valence bond wavefunction known as a 
perfect pairing state32,33 and a hardware-efficient quantum circuit15 
with an offline single-particle rotation, which would be classically dif-
ficult to use as a trial wavefunction for AFQMC. The state preparation 
circuit in Fig. 2a shows how this trial wavefunction can be efficiently 
prepared on a quantum computer.

In this 8-qubit experiment, we consider H4 in a square geometry with 
side lengths of 1.23 Å and its dissociation into four hydrogen atoms. 
This system is often used as a test bed for electron correlation meth-
ods in quantum chemistry34,35. We perform our calculations using two 
Gaussian basis sets: the minimal (STO-3G) basis set36 and the correla-
tion consistent quadruple-zeta (cc-pVQZ) basis set37. The latter basis 
set is of the size and accuracy required to make a direct comparison 
with laboratory experiments. When describing the ground state of this 
system, there are two equally important, degenerate mean-field states. 
This makes AFQMC with a single mean-field trial wavefunction highly 

unreliable. In addition, a method often referred to as a ‘gold standard’ 
classical approach (that is, coupled-cluster with singles, doubles and 
perturbative triples, CCSD(T)38) also performs poorly for this system.

In Table 1, the difficulties of AFQMC and CCSD(T) are well illustrated 
by comparing their atomization energies with exact values in two dif-
ferent basis sets. Both approaches show errors that are significantly 
larger than ‘chemical accuracy’ (1 kcal mol−1). The variational energy of 
the quantum trial reconstructed from experiment has a bias that can 
be as large as 33 kcal mol−1. The noise on our quantum device makes the 
quality of our quantum trial far from that of the ideal (that is, noiseless) 
ansatz, as shown in Fig. 2b, c, resulting in an error as large as 10 kcal mol−1 
in the atomization energy. Nonetheless, QC-AFQMC reduces this error 
significantly, and achieves chemical accuracy in both bases. Notably, 
we achieve this accuracy even in the larger basis, where the variational 
energy of the quantum trial in the absence of noise is far from exact.

As shown in Supplementary Section C, for the larger basis set we 
obtain a residual ‘virtual’ correlation energy by using the quantum 
resources on a smaller number of orbitals to unbias an AFQMC calcu-
lation on a larger number of orbitals, with no additional overhead to 
the quantum computer. This capability makes our implementation 
competitive with state-of-the-art classical approaches. Similar virtual 
correlation energy strategies have been previously discussed within the 
framework of VQE39, but, unlike our approach, those strategies come 
with a significant measurement overhead. To unravel the QC-AFQMC 
results on H4 further, in Fig. 2b, c we illustrate the evolution of trial 
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Fig. 2 | 8-qubit experiment. a, Circuit used for the 8-qubit H4 experiment over 
a 2 × 4 qubit grid (from Q1,1 to Q2,1) on the Sycamore quantum processor43. In the 
circuit diagram, H denotes the Hadamard gate, G denotes a Givens rotation 
gate (generated by XX + YY), P denotes a single-qubit Clifford gate and |Ψ ⟩T  
denotes the quantum trial wavefunction. Note that the ‘offline’ orbital rotation 
is not present in the actual quantum circuit because it is handled via classical 
post-processing, as discussed in Supplementary Section C. b, c, Convergence 
of the atomization energy of H4 as a function of the number of measurements. 
A minimal basis set (STO-3G) with four orbitals total from four independent 
experiments (exp.) (b) and a quadruple-zeta basis set (cc-pVQZ) with 120 
orbitals total from two independent experiments (c). The different symbols in 

b and c show independent experimental results. Note that the ideal (that is, 
noiseless) atomization energy of the quantum trial (Q. trial) in b is precisely on 
top of the exact one and that the QC-AFQMC energy would likewise be exact in 
the absence of noise. For the system in c, QC-AFQMC with this quantum trial 
would yield an error of 0.2 kcal mol−1 despite a much larger error in the 
variational energy of the quantum trial. Further note that the quantum 
resource used in c is 8 qubit, but, as shown in Supplementary Section C, our 
algorithm enables the addition of ‘virtual’ electron correlation in a much larger 
Hilbert space. The top panels of b and c magnify the energy range near the 
exact answer. See Extended Data Tables 1–8 for the raw data for b, c, as well as 
other relevant data.

Table 1 | Atomization energy (kcal mol−1) of H4

Exact AFQMC CCSD(T) Q. trial QC-AFQMC

4-orbital 64.7 62.9 59.6 55.2 64.3

120-orbital 70.5 68.6 71.9 37.4 69.7

Data for quantum trial (Q. trial; experiment), AFQMC (classical), QC-AFQMC (experiment), 
CCSD(T) (classical ‘gold standard’) and exact results for minimal (STO-3G; 4-orbital) and 
quadruple-zeta (cc-pVQZ; 120-orbital) bases. Both of these last two experiments use 8 qubits. 
The statistical error of AFQMC and QC-AFQMC is less than 0.05 kcal mol−1 and therefore is 
not shown. Note that, as shown in Supplementary Section E, Q. trial results vary significantly 
run-to-run, while QC-AFQMC results are nearly identical run-to-run (showcasing the noise 
resilience of QC-AFQMC).
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and QC-AFQMC energies as a function of the number of measure-
ments made on the device. Despite the presence of significant noise 
in approximately 105 measurements, QC-AFQMC achieves chemical 
accuracy while coping with a sizeable residual bias in the underlying 
quantum trial.

Next, we move to a larger example, N2, which requires a total of  
12 qubits in our quantum experiment. Here a simpler quantum trial is 
usedfor QC-AFQMC by taking just the valence bond part of the wave-
function depicted in Fig. 2a. We examine the potential energy surface 
of N2 from compressed to elongated geometries, which is another 
common benchmark problem for classical quantum chemistry meth-
ods35,40. In Fig. 3a, the QC-AFQMC result is shown for the calculations 
performed in a triple-zeta basis (cc-pVTZ) set37, which corresponds to a 
60-orbital or 120-qubit Hilbert space. All examined methods, CCSD(T), 
AFQMC and QC-AFQMC, perform well near the equilibrium geometry, 
but CCSD(T) and AFQMC deviate from the exact results significantly as 
the bond distance is stretched. As a result, the error for ‘gold standard’ 
CCSD(T) can be as large as 14 kcal mol−1, and the error for AFQMC with 
a classical trial wavefunction can be as large as −8 kcal mol−1. The error 
in the QC-AFQMC computation ranges from −2 kcal mol−1 to 1 kcal mol−1 
depending on the bond distance. Thus, although we do not achieve 
chemical accuracy with QC-AFQMC, we note that, even with a simple 
quantum trial wavefunction, we produce energies that are competitive 
with state-of-the-art classical approaches. Idealized (that is, noiseless) 
VQE experiments for the same trial wavefunction would yield similar 
results to our quantum trial results Fig. 3a (within 4.5 kcal mol−1), which 
are much worse than our QC-AFQMC results with an error as large as 
50 kcal mol−1.

Finally, we present a 16-qubit experiment result for the ground-state 
simulation of a minimal unit cell (two-atom) model of periodic solid dia-
mond in a double-zeta basis set (DZVP-GTH41; 26 orbitals). Although at 
this level of theory the model exhibits significant finite-size effects and 
does not predict the correct experimental lattice constant, we aim to 
illustrate the utility of our algorithm in materials science applications. 

We emphasize that this is the largest quantum simulation of chem-
istry on a quantum processor so far (detailed resource counts and 
comparison with prior works are available in Extended Data Tables 
11, 12). We again use the simple perfect pairing state as our quantum 
trial wavefunction and demonstrate the improvement over a range 
of lattice parameters compared with classical AFQMC and CCSD(T) 
in Fig. 3b. There is a substantial improvement in the error going from 
AFQMC to QC-AFQMC, showing the increased accuracy due to better 
trial wavefunctions. At the same time, QC-AFQMC performed using the 
idealized quantum trial produces results comparable to our experi-
mental energies, suggesting that the error in our QC-AFQMC energies 
is mainly due to the use of an insufficiently accurate trial wavefunction 
rather than experimental error. Our accuracy is limited by the simple 
form of our quantum trial and yet we achieve accuracy nearly on a par 
with the classical gold standard method, CCSD(T).

Conclusion and outlook
In summary, we propose a scalable, noise-resilient quantum-classical 
hybrid algorithm that seamlessly embeds a special-purpose quantum 
primitive into an accurate quantum computational many-body method, 
namely QMC. Our work offers a computational strategy that effectively 
unbiases fermionic QMC approaches by leveraging state-of-the-art 
quantum information tools. We have realized this algorithm for a 
specific QMC algorithm known as AFQMC, and demonstrated its per-
formance in experiments as large as 16 qubit on a NISQ processor, pro-
ducing electronic energies that are competitive with state-of-the-art 
classical quantum chemistry methods. Our algorithm also enables the 
incorporation of the electron correlation energy outside the space 
that is handled by the quantum computer without increasing quantum 
resources or measurement overheads. In Supplementary Section F, 
we discuss issues related to asymptotic scaling and the potential for 
quantum advantage in our algorithm. Although we have yet to achieve 
practical quantum advantage over available classical algorithms, the 
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420  |  Nature  |  Vol 603  |  17 March 2022

Article
flexibility and scalability of our proposed approach in the construction 
of quantum trial functions, and its inherent noise resilience, promise 
a path forward for the simulation of chemistry in the NISQ era and 
beyond.

Note added in proof: After this work was nearly complete, a theory 
paper by Yang et al. appeared on arXiv42, describing a quantum algo-
rithm for assisting real-time dynamics with unconstrained QMC.
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Methods

Wavefunction overlap estimation
In this work, we estimate the overlap between the trial wavefunction 
and the statistical samples using a technique known as shadow 
tomography43,44. Experimentally, this entails performing randomly 
chosen measurements of a reference state related to |Ψ ⟩T  before 
beginning the QMC calculation, yielding the representation of |Ψ ⟩T  
in the computational basis for subsequent overlap evaluations.  
In this formulation of QC-QMC, there is no need for the QMC calcu-
lation to iteratively query the quantum processor, despite the fact 
that the details of the statistical samples are not determined in 
advance. By disentangling the interaction between the quantum and 
classical computer we avoid feedback latency, an appealing feature 
on early NISQ platforms that comes at the cost of requiring poten-
tially expensive classical post-processing (see Supplementary Section 
D for more details). Furthermore, our algorithm naturally achieves 
some degree of noise robustness, as explained in Supplementary 
Section D, because the quantity directly used in QC-QMC is the ratio 
between overlap values, which is inherently resilient to the estimates 
of the overlaps being rescaled. We highlight the challenges posed by 
the need to measure wavefunction overlaps precisely and the 
trade-offs involved in the use of shadow tomography (see also Sup-
plementary Section D), while giving our perspective on the most 
promising paths forward.

Phaseless constraints in AFQMC
In AFQMC, the ϕ τ| ( )⟩i  take the form of Slater determinants in arbitrary 
single-particle bases, enabling us to express the energy estimator (pre-
sented in Supplementary equation (3)) in terms of a modest number 
of wavefunction overlaps that we can evaluate efficiently on the quan-
tum processor (Supplementary Section C). The phaseless constraint 
is imposed to control the sign problem and, likewise, only requires 
calculating the overlaps between |Ψ ⟩T  and ϕ τ| ( )⟩i , as detailed in Sup-
plementary equation (6). AFQMC has been shown to be accurate in a 
number of cases even with classically available trial wavefunctions45,46; 
however, the bias incurred from the phaseless constraint cannot be 
overlooked.

Quantum processor
The experiments in this work were carried out on the Google 54-qubit 
quantum processor known as Sycamore47. The circuits were compiled 
using hardware-native conditional Z gates with typical error rates of 
≈0.5% (ref. 48).
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Extended Data Table 1 | Experimental data of variational energy for H4 in STO-3G with partitioned tomography

Variational energy of ΨT  from four independent repeated partitioned shadow tomography experiments with a different set of random Cliffords for H4, STO-3G (minimal basis). If the experiment 
was perfect (i.e., no circuit noise), then the variational energy should approach −1.969512.



Extended Data Table 2 | Experimental data of variational energy for H4 in STO-3G with unpartitioned shadow tomography

Same as Extended Data Table 1 but for the unpartitioned shadow tomography experiments.
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Extended Data Table 3 | Experimental data of variational energy for H4 in cc-pVQZ with partitioned tomography

Variational energy of ΨT  from four independent repeated partitioned shadow tomography experiments with a different set of random Cliffords for H4, cc-pVQZ (a quadruple-zeta basis). If the 
experiment was perfect (i.e., no circuit noise), then the variational energy should approach −2.069364.



Extended Data Table 4 | Experimental data of variational energy for H4 in STO-3G with unpartitioned tomography

Same as Extended Data Table 3 but for the unpartitioned shadow tomography experiments.
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Extended Data Table 5 | Experimental data of QC-AFQMC energy for H4 in STO-3G with partitioned shadow tomography

AFQMC energy using ΨT  from four independent repeated partitioned shadow tomography experiments with a different set of random Cliffords for H4, STO-3G (minimal basis). The exact 
ground-state energy is −1.969512. The numbers in parentheses indicate the statistical error of the AFQMC energy.



Extended Data Table 6 | Experimental data of QC-AFQMC energy for H4 in STO-3G with unpartitioned shadow tomography

Same as Extended Data Table 5 but for the unpartitioned shadow tomography experiments.
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Extended Data Table 7 | Experimental data of QC-AFQMC energy for H4 in cc-pVQZ with partitioned shadow tomography

AFQMC energy using ΨT  from four independent repeated partitioned shadow tomography experiments with a different set of random Cliffords for H4, cc-pVQZ (a quadruple-zeta basis). The 
exact ground-state energy is −2.11216599. The numbers in parentheses indicate the statistical error of the AFQMC energy.



Extended Data Table 8 | Experimental data of QC-AFQMC energy for H4 in cc-pVQZ with unpartitioned shadow tomography

Same as Extended Data Table 7 but for the unpartitioned shadow tomography experiments.
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Extended Data Table 9 | Raw data for N2 potential energy surface for seven bond distances (R)

Note that the energy of our quantum trial here is obtained from a single set of experiments which may vary significantly run-to-run. Quantum trial (ideal) indicates the variational energy of the 
trial wavefunction evaluated exactly assuming that there is no noise in the circuit execution. Similarly, QC-AFQMC (ideal) represents the QC-AFQMC data obtained with the ideal quantum trial 
wavefunction.



Extended Data Table 10 | Raw data for the diamond cold curve for five lattice constants (R)

Note that the energy of our quantum trial here is obtained from a single set of experiments which may vary significantly run-to-run. Note that these energies include the Madelung constant. 
Quantum trial (ideal) indicates the variational energy of the trial wavefunction evaluated exactly assuming that there is no noise in the circuit execution. Similarly, QC-AFQMC (ideal) represents 
the QC-AFQMC data obtained with the ideal quantum trial wavefunction.
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Extended Data Table 11 | Resource counts for the QC-AFQMC experiments realized in this work



Extended Data Table 12 | Resource estimates from prior fermionic simulations using gate-model quantum computers on 
more than four qubits

For the two Hubbard model experiments we distinguish between dynamics simulated for an interacting versus a non-interacting model. N = 8 indicates an eight site linear lattice with open 
boundary conditions. UENT is a nearest-neighbour cross-resonance style gate and XX(θ) is a −iθσ σexp( /2)x

i
x
j . As far as we are aware, these are the largest simulations using a gate-model quantum 

computer targeting fermionic ground states or dynamics. For references, see Supplementary Information.
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