Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Podocyte-targeted therapies — progress and future directions

Abstract

Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.

Key points

  • Kidney podocytes are the key target cell for injury across the spectrum of proteinuric kidney diseases; genetic, immunological, infectious, metabolic and other insults contribute to podocyte injury and loss.

  • The treatment of podocytopathies has traditionally relied on repurposed agents such as antihypertensive agents and immunosuppressive drugs.

  • The last two decades have witnessed an expansion in clinical trials of potential podocyte-protective therapies, including strategies that target Apol1 variants, endothelin 1 and endothelin receptors, transient receptor potential channels, complement, cytokines, mitochondrial dysfunction and aberrant lipid metabolism.

  • Remaining challenges include the identification of approaches to regenerate podocytes, the development of strategies for podocyte-specific drug delivery and the identification of biomarkers to guide personalized therapy for proteinuric kidney diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cellular locations of disease-causing podocyte genes.
Fig. 2: Mechanisms of action of select potential novel therapeutic interventions for podocytopathies.

Similar content being viewed by others

References

  1. Pavenstadt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Abrahamson, D. R. Role of the podocyte (and glomerular endothelium) in building the GBM. Semin. Nephrol. 32, 342–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Srivastava, T. et al. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am. J. Physiol. Ren. Physiol. 314, F22–F34 (2018).

    Article  Google Scholar 

  4. Smoyer, W. E. & Mundel, P. Regulation of podocyte structure during the development of nephrotic syndrome. J. Mol. Med. 76, 172–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Ichimura, K., Kurihara, H. & Sakai, T. Actin filament organization of foot processes in rat podocytes. J. Histochem. Cytochem. 51, 1589–1600 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Schell, C. & Huber, T. B. The evolving complexity of the podocyte cytoskeleton. J. Am. Soc. Nephrol. 28, 3166–3174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Dimke, H., Maezawa, Y. & Quaggin, S. E. Crosstalk in glomerular injury and repair. Curr. Opin. Nephrol. Hypertens. 24, 231–238 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Xing, C. Y. et al. Direct effects of dexamethasone on human podocytes. Kidney Int. 70, 1038–1045 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 3, 85ra46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dahl, N. K. et al. The clinical utility of genetic testing in the diagnosis and management of adults with chronic kidney disease. J. Am. Soc. Nephrol. 34, 2039–2050 (2023).

    Article  PubMed  Google Scholar 

  13. Thompson, A. et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin. J. Am. Soc. Nephrol. 14, 469–481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao, T. et al. Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin. J. Am. Soc. Nephrol. 14, 213–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sampson, M. G. et al. Using population genetics to interrogate the monogenic nephrotic syndrome diagnosis in a case cohort. J. Am. Soc. Nephrol. 27, 1970–1983 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Trautmann, A., Lipska-Zietkiewicz, B. S. & Schaefer, F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet registry. Front. Pediatr. 6, 200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bierzynska, A. et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 91, 937–947 (2017).

    Article  PubMed  Google Scholar 

  18. Buscher, A. K. et al. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 5, 2075–2084 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palmer, N. D. & Freedman, B. I. APOL1 and progression of nondiabetic nephropathy. J. Am. Soc. Nephrol. 24, 1344–1346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Gallon, L., Leventhal, J., Skaro, A., Kanwar, Y. & Alvarado, A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 366, 1648–1649 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Cara-Fuentes, G. et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr. Nephrol. 29, 1363–1371 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, M. et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl. Res. 166, 384–398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delville, M. et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl. Med. 6, 256ra136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deegens, J. K. & Wetzels, J. F. Glomerular disease: the search goes on: suPAR is not the elusive FSGS factor. Nat. Rev. Nephrol. 10, 431–432 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Kronbichler, A., Saleem, M. A., Meijers, B. & Shin, J. I. Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J. Immunol. Res. 2016, 2068691 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Watts, A. J. B. et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J. Am. Soc. Nephrol. 33, 238–252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shirai, Y. et al. A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence. Kidney Int. 105, 608–617 (2023).

    Article  PubMed  Google Scholar 

  31. Zang, N. et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 25, 105145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, J. et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Invest. 131, e136329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, B. C. et al. Minimal change disease is associated with mitochondrial injury and STING pathway activation. J. Clin. Med. 11, 577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Idasiak-Piechocka, I., Oko, A., Pawliczak, E., Kaczmarek, E. & Czekalski, S. Urinary excretion of soluble tumour necrosis factor receptor 1 as a marker of increased risk of progressive kidney function deterioration in patients with primary chronic glomerulonephritis. Nephrol. Dial. Transpl. 25, 3948–3956 (2010).

    Article  CAS  Google Scholar 

  36. Chung, C. F. et al. Intrinsic tumor necrosis factor-α pathway is activated in a subset of patients with focal segmental glomerulosclerosis. PLoS One 14, e0216426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joy, M. S. et al. Phase 1 trial of adalimumab in focal segmental glomerulosclerosis (FSGS): II. Report of the FONT (Novel Therapies for Resistant FSGS) study group. Am. J. Kidney Dis. 55, 50–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Trachtman, H. et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 16, 111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhai, S., Zhao, L., Zhang, Y. & Ma, Q. Interleukin-7 stimulation inhibits nephrin activation and induces podocyte injury. Biochem. Biophys. Res. Commun. 507, 100–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Xiong, T. et al. Interleukin-9 protects from early podocyte injury and progressive glomerulosclerosis in Adriamycin-induced nephropathy. Kidney Int. 98, 615–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, E. Y. et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am. J. Physiol. Ren. Physiol. 297, F85–F94 (2009).

    Article  CAS  Google Scholar 

  42. Mariani, L. H. et al. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. Kidney Int. 103, 565–579 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, A. H. et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2, e81836 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao, H. et al. Role of mitochondrial dysfunction in renal fibrosis promoted by hypochlorite-modified albumin in a remnant kidney model and protective effects of antioxidant peptide SS-31. Eur. J. Pharmacol. 804, 57–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Agrawal, S., Brier, M. E., Kerlin, B. A., Smoyer, W. E. & Pediatric Nephrology Research Consortium. Plasma cytokine profiling to predict steroid resistance in pediatric nephrotic syndrome. Kidney Int. Rep. 6, 785–795 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Torban, E. et al. From podocyte biology to novel cures for glomerular disease. Kidney Int. 96, 850–861 (2019).

    Article  PubMed  Google Scholar 

  47. Angeletti, A. et al. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J. Exp. Med. 217, e20191699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, J. et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis. PLoS One 15, e0234934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thurman, J. M. et al. Complement activation in patients with focal segmental glomerulosclerosis. PLoS One 10, e0136558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lu, Q. et al. Complement factor B in high glucose-induced podocyte injury and diabetic kidney disease. JCI Insight 6, e147716 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rossitto, G. et al. High sodium intake, glomerular hyperfiltration, and protein catabolism in patients with essential hypertension. Cardiovasc. Res. 117, 1372–1381 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Srivastava, T. et al. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract. Nephrol. Dial. Transpl. 32, 759–765 (2017).

    Article  CAS  Google Scholar 

  54. Holscher, D. L. et al. Next-generation morphometry for pathomics-data mining in histopathology. Nat. Commun. 14, 470 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kriz, W. & Lemley, K. V. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 (2015).

    Article  PubMed  Google Scholar 

  56. Sharma, M., Sharma, R., McCarthy, E. T., Savin, V. J. & Srivastava, T. Hyperfiltration-associated biomechanical forces in glomerular injury and response: potential role for eicosanoids. Prostaglandins Other Lipid Mediat. 132, 59–68 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gyarmati, G. et al. The role of TRPC6 calcium channels and P2 purinergic receptors in podocyte mechanical and metabolic sensing. Physiol. Int. https://doi.org/10.1556/2060.2021.00205 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Endlich, K., Kliewe, F. & Endlich, N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflug. Arch. 469, 937–949 (2017).

    Article  CAS  Google Scholar 

  60. Sharma, M. et al. Glomerular biomechanical stress and lipid mediators during cellular changes leading to chronic kidney disease. Biomedicines 10, 407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srivastava, T. et al. Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J. Cell Commun. Signal. 4, 79–90 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, S. et al. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med. 15, 2 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M. & Cherney, D. Z. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134, 752–772 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Sawada, K. et al. Upregulation of α3β1-integrin in podocytes in early-stage diabetic nephropathy. J. Diabetes Res. 2016, 9265074 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Iglesias-de la Cruz, M. C. et al. Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int. 62, 901–913 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Rabbani, N. & Thornalley, P. J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 93, 803–813 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Lay, A. C. & Coward, R. J. M. The evolving importance of insulin signaling in podocyte health and disease. Front. Endocrinol. 9, 693 (2018).

    Article  Google Scholar 

  69. Eid, A. A. et al. Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 58, 1201–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Galvan, D. L. et al. Real-time in vivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen species in diabetic nephropathy. Kidney Int. 92, 1282–1287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jha, J. C. et al. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 59, 379–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Jha, J. C. et al. Independent of renox, NOX5 promotes renal inflammation and fibrosis in diabetes by activating ROS-sensitive pathways. Diabetes 71, 1282–1298 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, A. et al. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J. Clin. Invest. 130, 5523–5535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ducasa, G. M. et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J. Clin. Invest. 129, 3387–3400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wright, M. B. et al. Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat. Commun. 12, 4662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Y. et al. Therapeutic potential targeting podocyte mitochondrial dysfunction in focal segmental glomerulosclerosis. Kidney Dis. 9, 254–264 (2023).

    Article  Google Scholar 

  77. Kaneko, S. et al. Mitochondrial DNA deletion-dependent podocyte injuries in Mito-miceΔ, a murine model of mitochondrial disease. Exp. Anim. 71, 14–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Jiang, L. et al. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria. J. Biol. Chem. 288, 23368–23379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tian, D. et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci. Signal. 3, ra77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Struk, T. et al. Transcriptome analysis of primary podocytes reveals novel calcium regulated regulatory networks. FASEB J. 34, 14490–14506 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Xu, H. et al. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 19, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang, Q. et al. Loss of UCP2 causes mitochondrial fragmentation by OMA1-dependent proteolytic processing of OPA1 in podocytes. FASEB J. 37, e23265 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, Y. Y. et al. Identification of ULK1 as a novel mitophagy-related gene in diabetic nephropathy. Front. Endocrinol. 13, 1079465 (2022).

    Article  Google Scholar 

  84. Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Yildirim, D. et al. Role of autophagy and evaluation the effects of microRNAs 214, 132, 34c and prorenin receptor in a rat model of focal segmental glomerulosclerosis. Life Sci. 280, 119671 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, B. et al. Zhen-Wu-Tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways. Front. Pharmacol. 12, 777670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cina, D. P. et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J. Am. Soc. Nephrol. 23, 412–420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ito, N. et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab. Invest. 91, 1584–1595 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Mao, J. et al. Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation. Am. J. Physiol. Ren. Physiol. 307, F1023–F1032 (2014).

    Article  CAS  Google Scholar 

  92. Munivenkatappa, R. et al. Tubular epithelial cell and podocyte apoptosis with de novo sirolimus based immunosuppression in renal allograft recipients with DGF. Histol. Histopathol. 25, 189–196 (2010).

    CAS  PubMed  Google Scholar 

  93. Cho, M. E., Hurley, J. K. & Kopp, J. B. Sirolimus therapy of focal segmental glomerulosclerosis is associated with nephrotoxicity. Am. J. Kidney Dis. 49, 310–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Tumlin, J. A. et al. A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 1, 109–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Liern, M., De Reyes, V., Fayad, A. & Vallejo, G. Use of sirolimus in patients with primary steroid-resistant nephrotic syndrome. Nefrologia 32, 321–328 (2012).

    PubMed  Google Scholar 

  96. Kato, H. & Susztak, K. Repair problems in podocytes: Wnt, Notch, and glomerulosclerosis. Semin. Nephrol. 32, 350–356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Teixeira Vde, P. et al. Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int. 67, 514–523 (2005).

    Article  PubMed  Google Scholar 

  98. Dai, C. et al. Wnt/β-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. 20, 1997–2008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kato, H. et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 286, 26003–26015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, C. L. et al. Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J. Am. Soc. Nephrol. 21, 124–135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Waters, A. M. et al. Ectopic notch activation in developing podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. 19, 1139–1157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lai, A. S. & Lai, K. N. Viral nephropathy. Nat. Clin. Pract. Nephrol. 2, 254–262 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Angeletti, A., Cantarelli, C. & Cravedi, P. HCV-associated nephropathies in the era of direct acting antiviral agents. Front. Med. 6, 20 (2019).

    Article  Google Scholar 

  105. Chan, T. M. Hepatitis B and renal disease. Curr. Hepat. Rep. 9, 99–105 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bruggeman, L. A. et al. Renal epithelium is a previously unrecognized site of HIV-1 infection. J. Am. Soc. Nephrol. 11, 2079–2087 (2000).

    Article  PubMed  Google Scholar 

  107. Canaud, G. et al. The kidney as a reservoir for HIV-1 after renal transplantation. J. Am. Soc. Nephrol. 25, 407–419 (2014).

    Article  PubMed  Google Scholar 

  108. Winston, J. A. et al. Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N. Engl. J. Med. 344, 1979–1984 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Friedman, D. J. & Pollak, M. R. APOL1 nephropathy: from genetics to clinical applications. Clin. J. Am. Soc. Nephrol. 16, 294–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Kudose, S. et al. Kidney biopsy findings in patients with COVID-19. J. Am. Soc. Nephrol. 31, 1959–1968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shetty, A. A. et al. COVID-19-associated glomerular disease. J. Am. Soc. Nephrol. 32, 33–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Wu, H. et al. AKI and collapsing glomerulopathy associated with COVID-19 and APOL 1 high-risk genotype. J. Am. Soc. Nephrol. 31, 1688–1695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    Article  PubMed  Google Scholar 

  115. Roufosse, C. et al. Electron microscopic investigations in COVID-19: not all crowns are coronas. Kidney Int. 98, 505–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hassler, L., Reyes, F., Sparks, M. A., Welling, P. & Batlle, D. Evidence for and against direct kidney infection by SARS-CoV-2 in patients with COVID-19. Clin. J. Am. Soc. Nephrol. 16, 1755–1765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lemley, K. V. et al. Podocytopenia and disease severity in IgA nephropathy. Kidney Int. 61, 1475–1485 (2002).

    Article  PubMed  Google Scholar 

  119. Yin, L., Yu, L., He, J. C. & Chen, A. Controversies in podocyte loss: death or detachment? Front. Cell Dev. Biol. 9, 771931 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shankland, S. J., Anders, H. J. & Romagnani, P. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair. Curr. Opin. Nephrol. Hypertens. 22, 302–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. 18, 3128–3138 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Sagrinati, C. et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J. Am. Soc. Nephrol. 17, 2443–2456 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Ronconi, E. et al. The role of podocyte damage in the pathogenesis of glomerulosclerosis and possible repair mechanisms [Italian]. G. Ital. Nefrol. 26, 660–669 (2009).

    PubMed  Google Scholar 

  125. Liu, W. B. et al. Single cell landscape of parietal epithelial cells in healthy and diseased states. Kidney Int. 104, 108–123 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Kaverina, N. V. et al. Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging. PLoS One 12, e0173891 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lichtnekert, J. et al. Renin-angiotensin-aldosterone system inhibition increases podocyte derivation from cells of renin lineage. J. Am. Soc. Nephrol. 27, 3611–3627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pippin, J. W. et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am. J. Pathol. 183, 542–557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Macconi, D. et al. Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. Am. J. Pathol. 174, 797–807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Watanabe, H. et al. Inhibition of the renin-angiotensin system causes concentric hypertrophy of renal arterioles in mice and humans. JCI Insight 6, e154337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wanner, N. et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J. Am. Soc. Nephrol. 25, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dai, Y. et al. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int. 92, 1444–1457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grahammer, F., Wanner, N. & Huber, T. B. Podocyte regeneration: who can become a podocyte? Am. J. Pathol. 183, 333–335 (2013).

    Article  PubMed  Google Scholar 

  135. Arendshorst, W. J., Brannstrom, K. & Ruan, X. Actions of angiotensin II on the renal microvasculature. J. Am. Soc. Nephrol. 10, S149–S161 (1999).

    CAS  PubMed  Google Scholar 

  136. Casare, F. A. et al. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am. J. Physiol. Ren. Physiol. 310, F1295–F1307 (2016).

    Article  CAS  Google Scholar 

  137. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  138. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Gansevoort, R. T., Sluiter, W. J., Hemmelder, M. H., de Zeeuw, D. & de Jong, P. E. Antiproteinuric effect of blood-pressure-lowering agents: a meta-analysis of comparative trials. Nephrol. Dial. Transpl. 10, 1963–1974 (1995).

    CAS  Google Scholar 

  140. Apperloo, A. J., de Zeeuw, D., Sluiter, H. E. & de Jong, P. E. Differential effects of enalapril and atenolol on proteinuria and renal haemodynamics in non-diabetic renal disease. BMJ 303, 821–824 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ren, Z. et al. Angiotensin II induces nephrin dephosphorylation and podocyte injury: role of caveolin-1. Cell Signal. 24, 443–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, S. et al. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway. Ren. Fail. 38, 268–275 (2016).

    Article  PubMed  Google Scholar 

  143. Cardoso, V. G. et al. Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na+/H+ exchanger isoform 1 activity. BMC Nephrol. 19, 179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tao, Y. et al. Enhanced Orai1-mediated store-operated Ca2+ channel/calpain signaling contributes to high glucose-induced podocyte injury. J. Biol. Chem. 298, 101990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tu, P., Gibon, J. & Bouron, A. The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria. J. Neurochem. 112, 204–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Binz-Lotter, J. et al. Injured podocytes are sensitized to angiotensin II-induced calcium signaling. J. Am. Soc. Nephrol. 31, 532–542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kidney Disease: Improving Global Outcomes Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 100, S1–S276 (2021).

    Article  Google Scholar 

  148. Heerspink, H. J., Johnsson, E., Gause-Nilsson, I., Cain, V. A. & Sjostrom, C. D. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes. Metab. 18, 590–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cherney, D. et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia 59, 1860–1870 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Barnett, A. H. et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2, 369–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Yale, J. F. et al. Initiation of once daily insulin detemir is not associated with weight gain in patients with type 2 diabetes mellitus: results from an observational study. Diabetol. Metab. Syndr. 5, 56 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. The EMPA-KIDNEY Collaborative Group et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

  153. Wheeler, D. C. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 9, 22–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Wheeler, D. C. et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100, 215–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Wheeler, D. C. et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol. Dial. Transpl. 37, 1647–1656 (2022).

    Article  CAS  Google Scholar 

  156. Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  157. Cassis, P. et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 3, e98720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ge, M. et al. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome. eLife 12, e83353 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Tomita, I. et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 32, 404–419.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, X. X. et al. SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem. 292, 5335–5348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Locatelli, M. et al. Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the VEGF-A/caveolin-1/PV-1 signaling pathway. J. Pathol. 256, 468–479 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Kim, J. J. et al. Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine 63, 103162 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Jiang, L. et al. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways. Sci. Rep. 6, 35671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou, H. et al. Loss of the podocyte glucocorticoid receptor exacerbates proteinuria after injury. Sci. Rep. 7, 9833 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lewko, B. et al. Dexamethasone-dependent modulation of cyclic GMP synthesis in podocytes. Mol. Cell Biochem. 409, 243–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. McCaffrey, J. C. et al. Glucocorticoid therapy regulates podocyte motility by inhibition of Rac1. Sci. Rep. 7, 6725 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mallipattu, S. K. et al. Kruppel-like factor 15 mediates glucocorticoid-induced restoration of podocyte differentiation markers. J. Am. Soc. Nephrol. 28, 166–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Mallipattu, S. K. et al. Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J. Biol. Chem. 287, 19122–19135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Agrawal, S. et al. Pioglitazone enhances the beneficial effects of glucocorticoids in experimental nephrotic syndrome. Sci. Rep. 6, 24392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yu, M., Ren, Q. & Yu, S. Y. Role of nephrin phosphorylation inducted by dexamethasone and angiotensin II in podocytes. Mol. Biol. Rep. 41, 3591–3595 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Ohashi, T., Uchida, K., Uchida, S., Sasaki, S. & Nitta, K. Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin. Exp. Nephrol. 15, 688–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Wan, X. et al. Loss of epithelial membrane protein 2 aggravates podocyte injury via upregulation of caveolin-1. J. Am. Soc. Nephrol. 27, 1066–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Zhou, T. et al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia 55, 255–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Srivastava, S. P. et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat. Commun. 12, 2368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wu, X. et al. Glucocorticoids inhibit EGFR signaling activation in podocytes in anti-GBM crescentic glomerulonephritis. Front. Med. 9, 697443 (2022).

    Article  Google Scholar 

  177. Shi, S. et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J. Am. Soc. Nephrol. 19, 2159–2169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, J. et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 25, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Aramburu, J., Heitman, J. & Crabtree, G. R. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep. 5, 343–348 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Massella, L. et al. Cyclosporine A treatment in patients with Alport syndrome: a single-center experience. Pediatr. Nephrol. 25, 1269–1275 (2010).

    Article  PubMed  Google Scholar 

  181. Wu, J. et al. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J. Clin. Invest. 125, 4091–4106 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Shen, X. et al. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci. Rep. 6, 32087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jeruschke, S., Alex, D., Hoyer, P. F. & Weber, S. Protective effects of rituximab on puromycin-induced apoptosis, loss of adhesion and cytoskeletal alterations in human podocytes. Sci. Rep. 12, 12297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04983888 (2021).

  185. Aghajan, M. et al. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice. JCI Insight 4, e126124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yang, Y. W. et al. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte-specific APOL1 risk variant mice. Mol. Ther. 30, 2491–2504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Olabisi, O. A. & Heneghan, J. F. APOL1 nephrotoxicity: what does ion transport have to do with it? Semin. Nephrol. 37, 546–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Olabisi, O. A. et al. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc. Natl Acad. Sci. USA 113, 830–837 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Schaub, C. et al. Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J. Biol. Chem. 295, 13138–13149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05312879 (2022).

  191. He, J. C. et al. Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. J. Clin. Invest. 114, 643–651 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Meliambro, K. et al. Molecular analysis of the kidney from a patient with COVID-19-associated collapsing glomerulopathy. Kidney Med. 3, 653–658 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Nystrom, S. E. et al. JAK inhibitor blocks COVID-19 cytokine-induced JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight 7, e157432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05237388 (2023).

  195. Kohan, D. E., Rossi, N. F., Inscho, E. W. & Pollock, D. M. Regulation of blood pressure and salt homeostasis by endothelin. Physiol. Rev. 91, 1–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Morigi, M. et al. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am. J. Pathol. 166, 1309–1320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Saleh, M. A., Boesen, E. I., Pollock, J. S., Savin, V. J. & Pollock, D. M. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 56, 942–949 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Lenoir, O. et al. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 25, 1050–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Saleh, M. A., Pollock, J. S. & Pollock, D. M. Distinct actions of endothelin A-selective versus combined endothelin A/B receptor antagonists in early diabetic kidney disease. J. Pharmacol. Exp. Ther. 338, 263–270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ebefors, K. et al. Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int. 96, 957–970 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Komers, R. & Plotkin, H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R877–R884 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rheault, M. N. et al. Sparsentan versus irbesartan in focal segmental glomerulosclerosis. N. Engl. J. Med. 389, 2436–2445 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Heerspink, H. J. L. et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401, 1584–1594 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Syed, Y. Y. Sparsentan: first approval. Drugs 83, 563–568 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05213624 (2022).

  209. Wieder, N. & Greka, A. Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: towards a future of targeted therapies. Pediatr. Nephrol. 31, 1047–1054 (2016).

    Article  PubMed  Google Scholar 

  210. Krall, P. et al. Podocyte-specific overexpression of wild type or mutant trpc6 in mice is sufficient to cause glomerular disease. PLoS One 5, e12859 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. Moller, C. C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 18, 29–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Shengyou, Y. & Li, Y. The effects of siRNA-silenced TRPC6 on podocyte autophagy and apoptosis induced by AngII. J. Renin Angiotensin Aldosterone Syst. 16, 1266–1273 (2015).

    Article  PubMed  Google Scholar 

  214. Riehle, M. et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J. Am. Soc. Nephrol. 27, 2771–2783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Batool, L. et al. An inactivating human TRPC6 channel mutation without focal segmental glomerulosclerosis. Cell Mol. Life Sci. 80, 265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Walsh, L. et al. Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. Kidney Int. Rep. 6, 2575–2584 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Fremeaux-Bacchi, V. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. 8, 554–562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gou, S. J., Yuan, J., Wang, C., Zhao, M. H. & Chen, M. Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin. J. Am. Soc. Nephrol. 8, 1884–1891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Brilland, B. et al. Complement alternative pathway in ANCA-associated vasculitis: two decades from bench to bedside. Autoimmun. Rev. 19, 102424 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Riedl, M., Thorner, P. & Licht, C. C3 glomerulopathy. Pediatr. Nephrol. 32, 43–57 (2017).

    Article  PubMed  Google Scholar 

  221. Meuleman, M. S. et al. Rare variants in complement gene in C3 glomerulopathy and immunoglobulin-mediated membranoproliferative GN. Clin. J. Am. Soc. Nephrol. 18, 1435–1445 (2023).

    Article  PubMed  Google Scholar 

  222. Smith, R. J. H. et al. C3 glomerulopathy — understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 15, 129–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Rizk, D. V. et al. The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front. Immunol. 10, 504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Medjeral-Thomas, N. R., Cook, H. T. & Pickering, M. C. Complement activation in IgA nephropathy. Semin. Immunopathol. 43, 679–690 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Donadelli, R. et al. Unraveling the molecular mechanisms underlying complement dysregulation by nephritic factors in C3G and IC-MPGN. Front. Immunol. 9, 2329 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Birmingham, D. J. & Hebert, L. A. The complement system in lupus nephritis. Semin. Nephrol. 35, 444–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Weinstein, A., Alexander, R. V. & Zack, D. J. A review of complement activation in SLE. Curr. Rheumatol. Rep. 23, 16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Seifert, L. et al. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat. Commun. 14, 473 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gao, S., Cui, Z. & Zhao, M. H. Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy. J. Am. Soc. Nephrol. 33, 1742–1756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Anwar, I. J. et al. Complement-targeted therapies in kidney transplantation-insights from preclinical studies. Front. Immunol. 13, 984090 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Filippone, E. J., McCue, P. A. & Farber, J. L. Transplant glomerulopathy. Mod. Pathol. 31, 235–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Bonventre, J. V. Complement and renal ischemia-reperfusion injury. Am. J. Kidney Dis. 38, 430–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  233. Wang, L. et al. Labile heme aggravates renal inflammation and complement activation after ischemia reperfusion injury. Front. Immunol. 10, 2975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. Bomback, A. S. et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin. J. Am. Soc. Nephrol. 7, 748–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Lee, A. Avacopan: first approval. Drugs 82, 79–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Jayne, D. R. W., Merkel, P. A., Schall, T. J., Bekker, P. & ADVOCATE Study Group. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Trachtman, H. Emerging drugs for treatment of focal segmental glomerulosclerosis. Expert Opin. Emerg. Drugs 25, 367–375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05314231 (2022).

  240. Nie, S. et al. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib. Ther. 3, 18–62 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Wooden, B., Tarragon, B., Navarro-Torres, M. & Bomback, A. S. Complement inhibitors for kidney disease. Nephrol. Dial. Transpl. 38, ii29–ii39 (2023).

    Article  Google Scholar 

  242. Hou, Y. et al. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 310, F547–F559 (2016).

    Article  CAS  Google Scholar 

  243. Eirin, A. et al. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc. Res. 103, 461–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02436447 (2015).

  245. Zhu, Y. et al. Protective effects of inhibition of mitochondrial fission on organ function after sepsis. Front. Pharmacol. 12, 712489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Cassina, L., Chiaravalli, M. & Boletta, A. Increased mitochondrial fragmentation in polycystic kidney disease acts as a modifier of disease progression. FASEB J. 34, 6493–6507 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Tanriover, C. et al. The mitochondrion: a promising target for kidney disease. Pharmaceutics 15, 270 (2023).

    Article  Google Scholar 

  249. Lindblom, R. S. J. et al. Delineating a role for the mitochondrial permeability transition pore in diabetic kidney disease by targeting cyclophilin D. Clin. Sci. 134, 239–259 (2020).

    Article  CAS  Google Scholar 

  250. Wang, Z. et al. Pharmacological targeting of GSK3β confers protection against podocytopathy and proteinuria by desensitizing mitochondrial permeability transition. Br. J. Pharmacol. 172, 895–909 (2015).

    Article  CAS  PubMed  Google Scholar 

  251. Hong, Q. et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Wang, X. et al. Role of SIRT1 in HIV-associated kidney disease. Am. J. Physiol. Ren. Physiol. 319, F335–F344 (2020).

    Article  CAS  Google Scholar 

  253. Sattarinezhad, A., Roozbeh, J., Shirazi Yeganeh, B., Omrani, G. R. & Shams, M. Resveratrol reduces albuminuria in diabetic nephropathy: a randomized double-blind placebo-controlled clinical trial. Diabetes Metab. 45, 53–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  254. Xiao, L. et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 11, 297–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Ahmadi, A. et al. Randomized crossover clinical trial of coenzyme Q10 and nicotinamide riboside in chronic kidney disease. JCI Insight 8, e167274 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Drovandi, S. et al. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int. 102, 604–612 (2022).

    Article  CAS  PubMed  Google Scholar 

  257. Bagherniya, M. et al. The use of curcumin for the treatment of renal disorders: a systematic review of randomized controlled trials. Adv. Exp. Med. Biol. 1291, 327–343 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Vanaie, A. et al. Curcumin as a major active component of turmeric attenuates proteinuria in patients with overt diabetic nephropathy. J. Res. Med. Sci. 24, 77 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Weir, M. A. et al. The effect of micro-particle curcumin on chronic kidney disease progression: the MPAC-CKD randomized clinical trial. Nephrol. Dial. Transpl. 38, 2192–2200 (2023).

    Article  CAS  Google Scholar 

  260. Lindell, E., Zhong, L. & Zhang, X. Quiescent cancer cells — a potential therapeutic target to overcome tumor resistance and relapse. Int. J. Mol. Sci. 24, 3762 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Campbell, K. N. et al. Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J. Biol. Chem. 288, 17057–17062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zhong, F. et al. TYRO3 agonist as therapy for glomerular disease. JCI Insight 8, e165207 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Smart, S. K., Vasileiadi, E., Wang, X., DeRyckere, D. & Graham, D. K. The emerging role of TYRO3 as a therapeutic target in cancer. Cancers 10, 474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Lin, B., Ma, Y. Y. & Wang, J. W. Nano-technological approaches for targeting kidney diseases with focus on diabetic nephropathy: recent progress, and future perspectives. Front. Bioeng. Biotechnol. 10, 870049 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Sabiu, G. et al. Targeted nanotherapy for kidney diseases: a comprehensive review. Nephrol. Dial. Transpl. 38, 1385–1396 (2023).

    Article  CAS  Google Scholar 

  266. Wu, L. et al. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes. Int. J. Mol. Med. 39, 851–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Bruni, R. et al. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus. J. Control. Rel. 255, 94–107 (2017).

    Article  CAS  Google Scholar 

  268. Zhan, X. et al. Celastrol antagonizes high glucose-evoked podocyte injury, inflammation and insulin resistance by restoring the HO-1-mediated autophagy pathway. Mol. Immunol. 104, 61–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  269. Wu, M. et al. Celastrol aggravates LPS-induced inflammation and injuries of liver and kidney in mice. Am. J. Transl. Res. 10, 2078–2086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Alallam, B., Choukaife, H., Seyam, S., Lim, V. & Alfatama, M. Advanced drug delivery systems for renal disorders. Gels 9, 115 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Huang, X., Ma, Y., Li, Y., Han, F. & Lin, W. Targeted drug delivery systems for kidney diseases. Front. Bioeng. Biotechnol. 9, 683247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Vives, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Article  CAS  PubMed  Google Scholar 

  273. Arif, E. et al. Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J. Biol. Chem. 289, 9502–9518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Belmadani, S. et al. A thrombospondin-1 antagonist of transforming growth factor-β activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am. J. Pathol. 171, 777–789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Grange, C. & Bussolati, B. Extracellular vesicles in kidney disease. Nat. Rev. Nephrol. 18, 499–513 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Mason, W. J. et al. Systemic gene therapy with thymosin β4 alleviates glomerular injury in mice. Sci. Rep. 12, 12172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Daga, S. et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. Eur. J. Hum. Genet. 28, 480–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  278. Ding, W. Y. et al. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci. Transl. Med. 15, eabc8226 (2023).

    Article  CAS  PubMed  Google Scholar 

  279. De Vriese, A. S., Wetzels, J. F., Glassock, R. J., Sethi, S. & Fervenza, F. C. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat. Rev. Nephrol. 17, 619–630 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Musante, L. et al. Circulating anti-actin and anti-ATP synthase antibodies identify a sub-set of patients with idiopathic nephrotic syndrome. Clin. Exp. Immunol. 141, 491–499 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Cara-Fuentes, G. et al. Angiopoietin-like-4 and minimal change disease. PLoS One 12, e0176198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Jacobs-Cacha, C. et al. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent focal segmental glomerulosclerosis. Sci. Rep. 10, 1159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Lopez-Hellin, J. et al. A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am. J. Transpl. 13, 493–500 (2013).

    Article  CAS  Google Scholar 

  284. Alachkar, N., Gupta, G. & Montgomery, R. A. Angiotensin antibodies and focal segmental glomerulosclerosis. N. Engl. J. Med. 368, 971–973 (2013).

    Article  CAS  PubMed  Google Scholar 

  285. Abuzeineh, M., Aala, A., Alasfar, S. & Alachkar, N. Angiotensin II receptor 1 antibodies associate with post-transplant focal segmental glomerulosclerosis and proteinuria. BMC Nephrol. 21, 253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Savin, V. J. et al. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J. Immunol. Res. 2015, 714964 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Wei, C., Sigdel, T. K., Sarwal, M. M. & Reiser, J. Circulating CD40 autoantibody and suPAR synergy drives glomerular injury. Ann. Transl. Med. 3, 300 (2015).

    PubMed  PubMed Central  Google Scholar 

  288. Cara-Fuentes, G., Clapp, W. L., Johnson, R. J. & Garin, E. H. Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms. Pediatr. Nephrol. 31, 2179–2189 (2016).

    Article  PubMed  Google Scholar 

  289. Garin, E. H. et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J. Am. Soc. Nephrol. 20, 260–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Garin, E. H. et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 78, 296–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  291. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Zen, R. C. et al. Urinary CD80 and serum suPAR as biomarkers of glomerular disease among adults in Brazil. Diagnostics 13, 203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Lennon, R. et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J. Am. Soc. Nephrol. 19, 2140–2149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Pukajlo-Marczyk, A. & Zwolinska, D. Involvement of hemopexin in the pathogenesis of proteinuria in children with idiopathic nephrotic syndrome. J. Clin. Med. 10, 3160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Holt, R. C. et al. Heparanase activity is dysregulated in children with steroid-sensitive nephrotic syndrome. Kidney Int. 67, 122–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  296. Youssef, D. M., Elbehidy, R. M., El-Shal, A. S. & Sherief, L. M. T helper 1 and T helper 2 cytokines in atopic children with steroid-sensitive nephrotic syndrome. Iran. J. Kidney Dis. 9, 298–305 (2015).

    PubMed  Google Scholar 

  297. Garin, E. H., Blanchard, D. K., Matsushima, K. & Djeu, J. Y. IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int. 45, 1311–1317 (1994).

    Article  CAS  PubMed  Google Scholar 

  298. Garin, E. H., Laflam, P. & Chandler, L. Anti-interleukin 8 antibody abolishes effects of lipoid nephrosis cytokine. Pediatr. Nephrol. 12, 381–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  299. Al-Eisa, A. A., Al Rushood, M. & Al-Attiyah, R. J. Urinary excretion of IL-1β, IL-6 and IL-8 cytokines during relapse and remission of idiopathic nephrotic syndrome. J. Inflamm. Res. 10, 1–5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Tain, Y. L., Chen, T. Y. & Yang, K. D. Implications of serum TNF-β and IL-13 in the treatment response of childhood nephrotic syndrome. Cytokine 21, 155–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  301. Yap, H. K. et al. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J. Am. Soc. Nephrol. 10, 529–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  302. Chebotareva, N. et al. A pilot study of anti-nephrin antibodies in podocytopaties among adults. Nephrology 29, 86–92 (2024).

    Article  CAS  PubMed  Google Scholar 

  303. Charba, D. S. et al. Antibodies to protein tyrosine phosphatase receptor type O (PTPro) increase glomerular albumin permeability (Palb). Am. J. Physiol. Ren. Physiol. 297, F138–F144 (2009).

    Article  CAS  Google Scholar 

  304. Beaudreuil, S. et al. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One 14, e0219353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Zhang, X. et al. CASK, the soluble glomerular permeability factor, is secreted by macrophages in patients with recurrent focal and segmental glomerulo-sclerosis. Front. Immunol. 11, 875 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Wei, C., Spear, R., Hahm, E. & Reiser, J. suPAR, a circulating kidney disease factor. Front. Med. 8, 745838 (2021).

    Article  Google Scholar 

  307. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05003986 (2021).

  308. Egbuna, O. et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N. Engl. J. Med. 388, 969–979 (2023).

    Article  CAS  PubMed  Google Scholar 

  309. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05267262 (2022).

  310. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05183646 (2022).

  311. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05599815 (2023).

  312. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05383547 (2022).

  313. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05441826 (2022).

  314. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04009668 (2019).

  315. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05588063 (2022).

  316. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05583942 (2022).

  317. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04065438 (2020).

  318. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02235857 (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to the discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kirk N. Campbell.

Ethics declarations

Competing interests

K.M. reports consulting fees from Chinook and funds to her department for being a site principal investigator for a study sponsored by Vertex outside the submitted work. K.N.C. reports consulting fees from Travere, Goldfinch, Chinook, ANI, Sanofi, and Aurinia and funds to his department for being a site principal investigator for studies sponsored by Vertex, Chinook and Travere outside the submitted work. J.C.H. reports consulting fees from Yingli Pharmaceutics and serves as founder of Rila Therapeutics and member of the Scientific Advisory Board for Renalytix.

Peer review

Peer review information

Nature Reviews Nephrology thanks Fernando Fervenza, Alessia Fornoni, who co-reviewed with Rachel Njeim, Moin Saleem and Catherine Meyer-Schwesinger for their contributions to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meliambro, K., He, J.C. & Campbell, K.N. Podocyte-targeted therapies — progress and future directions. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00843-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00843-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research