Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics of hypertension: the road to precision medicine

Abstract

The known genetic architecture of blood pressure now comprises >30 genes, with rare variants resulting in monogenic forms of hypertension or hypotension and >1,477 common single-nucleotide polymorphisms (SNPs) being associated with the blood pressure phenotype. Monogenic blood pressure syndromes predominantly involve the renin–angiotensin–aldosterone system and the adrenal glucocorticoid pathway, with a smaller fraction caused by neuroendocrine tumours of the sympathetic and parasympathetic nervous systems. The SNPs identified in genome-wide association studies (GWAS) as being associated with the blood pressure phenotype explain only approximately 27% of the 30–50% estimated heritability of blood pressure, and the effect of each SNP on the blood pressure phenotype is small. A paucity of SNPs from GWAS are mapped to known genes causing monogenic blood pressure syndromes. For example, a GWAS signal mapped to the gene encoding uromodulin has been shown to affect blood pressure by influencing sodium homeostasis, and the effects of another GWAS signal were mediated by endothelin. However, the majority of blood pressure-associated SNPs show pleiotropic associations. Unravelling these associations can potentially help us to understand the underlying biological pathways. In this Review, we appraise the current knowledge of blood pressure genomics, explore the causal pathways for hypertension identified in Mendelian randomization studies and highlight the opportunities for drug repurposing and pharmacogenomics for the treatment of hypertension.

Key points

  • The genetic architecture of blood pressure encompasses approximately 30 genes, with rare variants involved in blood pressure dysregulation and >1,477 common single-nucleotide polymorphisms (SNPs) associated with blood pressure.

  • Monogenic forms of blood pressure disorders involve both germline and somatic variants, with the latter predominantly seen in patients with neoplasms associated with hypertension.

  • Most of the SNPs identified in genome-wide association studies (GWAS) as being associated with blood pressure are pleiotropic and mapped to non-coding regions of the genome, which makes functional mapping challenging.

  • Although translating GWAS signals into causal mechanisms and clinical applications has been slow, Mendelian randomization studies are substantially improving our understanding of known epidemiological correlations between blood pressure and other traits.

  • Pharmacogenomic studies of drug–gene interactions might offer a route to the early clinical translation of GWAS signals, with two clinical trials involving blood pressure GWAS SNPs currently ongoing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blood pressure regulation.
Fig. 2: Genetic architecture of blood pressure regulation and hypertension.
Fig. 3: Pleiotropic signals from phenome-wide association studies.

Similar content being viewed by others

References

  1. Canon, W. B. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Google Scholar 

  2. Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    PubMed  Google Scholar 

  3. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    PubMed  Google Scholar 

  4. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 138, e426–e483 (2018).

    PubMed  Google Scholar 

  5. Evans, J. G. & Rose, G. Hypertension. Br. Med. Bull. 27, 37–42 (1971).

    CAS  PubMed  Google Scholar 

  6. Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA 317, 165–182 (2017).

    PubMed  Google Scholar 

  7. Frohlich, E. D., Dustan, H. P. & Bumpus, F. M. Irvine H. Page: 1901-1991. The celebration of a leader. Hypertension 18, 443–445 (1991).

    CAS  PubMed  Google Scholar 

  8. Padmanabhan, S., Caulfield, M. & Dominiczak, A. F. Genetic and molecular aspects of hypertension. Circ. Res. 116, 937–959 (2015).

    CAS  PubMed  Google Scholar 

  9. Franklin, S. S. et al. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 96, 308–315 (1997).

    CAS  PubMed  Google Scholar 

  10. Carvalho, J. J. et al. Blood pressure in four remote populations in the INTERSALT Study. Hypertension 14, 238–246 (1989).

    CAS  PubMed  Google Scholar 

  11. Oliver, W. J., Cohen, E. L. & Neel, J. V. Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no-salt” culture. Circulation 52, 146–151 (1975).

    CAS  PubMed  Google Scholar 

  12. Bursztyn, M. Occupational and environmental influences on hypertension. J. Hum. Hypertens. 34, 202–206 (2020).

    PubMed  Google Scholar 

  13. Padmanabhan, S. & Joe, B. Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiol. Rev. 97, 1469–1528 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).

    CAS  PubMed  Google Scholar 

  16. Havlik, R. J. et al. Blood pressure aggregation in families. Am. J. Epidemiol. 110, 304–312 (1979).

    CAS  PubMed  Google Scholar 

  17. Kupper, N. et al. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 45, 80–85 (2005).

    CAS  PubMed  Google Scholar 

  18. Salfati, E., Morrison, A. C., Boerwinkle, E. & Chakravarti, A. Direct estimates of the genomic contributions to blood pressure heritability within a population-based cohort (ARIC). PLoS One 10, e0133031 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Luft, F. C. Twins in cardiovascular genetic research. Hypertension 37, 350–356 (2001).

    CAS  PubMed  Google Scholar 

  20. Niiranen, T. J. et al. Risk for hypertension crosses generations in the community: a multi-generational cohort study. Eur. Heart J. 38, 2300–2308 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Ference, B. A. et al. Clinical effect of naturally random allocation to lower systolic blood pressure beginning before the development of hypertension. Hypertension 63, 1182–1188 (2014).

    CAS  PubMed  Google Scholar 

  22. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    CAS  PubMed  Google Scholar 

  23. Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat. Genet. 50, 746–753 (2018).

    CAS  PubMed  Google Scholar 

  24. Funder, J. W. Primary aldosteronism. Hypertension 74, 458–466 (2019).

    CAS  PubMed  Google Scholar 

  25. Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40, 592–599 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baranowski, E. S., Arlt, W. & Idkowiak, J. Monogenic disorders of adrenal steroidogenesis. Horm. Res. Paediatr. 89, 292–310 (2018).

    CAS  PubMed  Google Scholar 

  27. Ceccato, F. & Mantero, F. Monogenic forms of hypertension. Endocrinol. Metab. Clin. North Am. 48, 795–810 (2019).

    PubMed  Google Scholar 

  28. Seidel, E., Schewe, J. & Scholl, U. I. Genetic causes of primary aldosteronism. Exp. Mol. Med. 51, 131 (2019).

    PubMed Central  Google Scholar 

  29. Tadjine, M., Lampron, A., Ouadi, L. & Bourdeau, I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol. 68, 264–270 (2008).

    CAS  Google Scholar 

  30. Seyberth, H. W., Weber, S. & Komhoff, M. Bartter’s and Gitelman’s syndrome. Curr. Opin. Pediatr. 29, 179–186 (2017).

    PubMed  Google Scholar 

  31. Laghmani, K. et al. Polyhydramnios, transient antenatal Bartter’s syndrome, and MAGED2 mutations. N. Engl. J. Med. 374, 1853–1863 (2016).

    CAS  PubMed  Google Scholar 

  32. Maass, P. G. et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat. Genet. 47, 647–653 (2015).

    CAS  PubMed  Google Scholar 

  33. Pillai, S., Gopalan, V., Smith, R. A. & Lam, A. K. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit. Rev. Oncol. Hematol. 100, 190–208 (2016).

    PubMed  Google Scholar 

  34. Roman-Gonzalez, A. & Jimenez, C. Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr. Opin. Endocrinol. Diabetes Obes. 24, 174–183 (2017).

    PubMed  Google Scholar 

  35. Dahia, P. L. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat. Rev. Cancer 14, 108–119 (2014).

    CAS  PubMed  Google Scholar 

  36. Fishbein, L. et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31, 181–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mancuso, N. et al. Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am. J. Hum. Genet. 100, 473–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Freund, M. K. et al. Phenotype-specific enrichment of mendelian disorder genes near GWAS regions across 62 complex traits. Am. J. Hum. Genet. 103, 535–552 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Visscher, P. M. et al. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Graham, L. A. et al. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63, 551–558 (2014).

    CAS  PubMed  Google Scholar 

  46. Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013).

    CAS  PubMed  Google Scholar 

  47. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03354897?term=NCT03354897 (2017).

  48. Gupta, R. M. et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170, 522–533.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dhaun, N. & Webb, D. J. Endothelins in cardiovascular biology and therapeutics. Nat. Rev. Cardiol. 16, 491–502 (2019).

    PubMed  Google Scholar 

  51. Barton, M. & Yanagisawa, M. Endothelin: 30 years from discovery to therapy. Hypertension 74, 1232–1265 (2019).

    CAS  PubMed  Google Scholar 

  52. Iglarz, M. et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 327, 736–745 (2008).

    CAS  PubMed  Google Scholar 

  53. Verweij, P., Danaietash, P., Flamion, B., Menard, J. & Bellet, M. Randomized dose-response study of the new dual endothelin receptor antagonist aprocitentan in hypertension. Hypertension 75, 956–965 (2020).

    CAS  PubMed  Google Scholar 

  54. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03541174 (2018).

  55. Ford, T. J. et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur. Heart J. 41, 3239–3252 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04097314?term=NCT04097314 (2019).

  57. Ren, M. et al. The biological impact of blood pressure-associated genetic variants in the natriuretic peptide receptor C gene on human vascular smooth muscle. Hum. Mol. Genet. 27, 199–210 (2018).

    CAS  PubMed  Google Scholar 

  58. Ng, F. L. et al. Increased NBCn1 expression, Na+/HCO3- co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension. Hum. Mol. Genet. 26, 989–1002 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, R. et al. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum. Mol. Genet. 25, 4117–4126 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. International Schizophrenia Consortium, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Google Scholar 

  61. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    CAS  PubMed  Google Scholar 

  62. International Consortium for Blood Pressure Genome-Wide Association Studies, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Google Scholar 

  63. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    PubMed  Google Scholar 

  64. Ference, B. A. et al. Association of genetic variants related to combined exposure to lower low-density lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. JAMA 322, 1381–1391 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Knowles, J. W. et al. Impact of a genetic risk score for coronary artery disease on reducing cardiovascular risk: a pilot randomized controlled study. Front. Cardiovasc. Med. 4, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Loos, R. J. Genetics: genome-wide risk profiles - will they change your life(style)? Nat. Rev. Endocrinol. 7, 252–254 (2011).

    PubMed  Google Scholar 

  68. Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).

    PubMed  Google Scholar 

  69. Marquez-Luna, C., Loh, P. R., South Asian Type 2 Diabetes (SAT2D) Consortium; SIGMA Type 2 Diabetes Consortium & Price, A. L. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet. Epidemiol. 41, 811–823 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).

    CAS  PubMed  Google Scholar 

  71. Chatterjee, N., Shi, J. & Garcia-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    CAS  PubMed  Google Scholar 

  73. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pingault, J. B. et al. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19, 566–580 (2018).

    CAS  PubMed  Google Scholar 

  75. Neter, J. E., Stam, B. E., Kok, F. J., Grobbee, D. E. & Geleijnse, J. M. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42, 878–884 (2003).

    CAS  PubMed  Google Scholar 

  76. Timpson, N. J. et al. Does greater adiposity increase blood pressure and hypertension risk?: Mendelian randomization using the FTO/MC4R genotype. Hypertension 54, 84–90 (2009).

    CAS  PubMed  Google Scholar 

  77. Bell, J. A. et al. Associations of body mass and fat indexes with cardiometabolic traits. J. Am. Coll. Cardiol. 72, 3142–3154 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Roerecke, M. et al. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2, e108–e120 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Macgregor, S. et al. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum. Mol. Genet. 18, 580–593 (2009).

    CAS  PubMed  Google Scholar 

  80. Chen, L., Smith, G. D., Harbord, R. M. & Lewis, S. J. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 5, e52 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Holmes, M. V. et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 349, g4164 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Millwood, I. Y. et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500 000 men and women in China. Lancet 393, 1831–1842 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Horikoshi, M. et al. Genome-wide associations for birth weight and correlations with adult disease. Nature 538, 248–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Barker, D. J., Osmond, C., Golding, J., Kuh, D. & Wadsworth, M. E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298, 564–567 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Langenberg, C., Hardy, R., Kuh, D. & Wadsworth, M. E. Influence of height, leg and trunk length on pulse pressure, systolic and diastolic blood pressure. J. Hypertens. 21, 537–543 (2003).

    CAS  PubMed  Google Scholar 

  87. Bourgeois, B. et al. Associations between height and blood pressure in the United States population. Medicine 96, e9233 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. London, G. M., Guerin, A. P., Pannier, B. M., Marchais, S. J. & Metivier, F. Body height as a determinant of carotid pulse contour in humans. J. Hypertens. Suppl. 10, S93–S95 (1992).

    CAS  PubMed  Google Scholar 

  89. Lai, F. Y. et al. Adult height and risk of 50 diseases: a combined epidemiological and genetic analysis. BMC Med. 16, 187 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Marouli, E. et al. Mendelian randomisation analyses find pulmonary factors mediate the effect of height on coronary artery disease. Commun. Biol. 2, 119 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Shrine, N. et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51, 481–493 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Palatini, P. Role of elevated heart rate in the development of cardiovascular disease in hypertension. Hypertension 58, 745–750 (2011).

    CAS  PubMed  Google Scholar 

  93. Larsson, S. C., Drca, N., Mason, A. M. & Burgess, S. Resting heart rate and cardiovascular disease. Circ. Genom. Precis. Med. 12, e002459 (2019).

    PubMed  Google Scholar 

  94. Wheeler, J. G., Mussolino, M. E., Gillum, R. F. & Danesh, J. Associations between differential leucocyte count and incident coronary heart disease: 1764 incident cases from seven prospective studies of 30,374 individuals. Eur. Heart J. 25, 1287–1292 (2004).

    PubMed  Google Scholar 

  95. Lassale, C. et al. Elements of the complete blood count associated with cardiovascular disease incidence: Findings from the EPIC-NL cohort study. Sci. Rep. 8, 3290 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Shah, A. D., Denaxas, S., Nicholas, O., Hingorani, A. D. & Hemingway, H. Low eosinophil and low lymphocyte counts and the incidence of 12 cardiovascular diseases: a CALIBER cohort study. Open Heart 3, e000477 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Jae, S. Y. et al. Higher blood hematocrit predicts hypertension in men. J. Hypertens. 32, 245–250 (2014).

    CAS  PubMed  Google Scholar 

  98. Paul, L. et al. Hematocrit predicts long-term mortality in a nonlinear and sex-specific manner in hypertensive adults. Hypertension 60, 631–638 (2012).

    CAS  PubMed  Google Scholar 

  99. Atsma, F. et al. Hemoglobin level is positively associated with blood pressure in a large cohort of healthy individuals. Hypertension 60, 936–941 (2012).

    CAS  PubMed  Google Scholar 

  100. Schaffer, A. et al. Impact of red blood cells count on the relationship between high density lipoproteins and the prevalence and extent of coronary artery disease: a single centre study [corrected]. J. Thromb. Thrombolysis 40, 61–68 (2015).

    CAS  PubMed  Google Scholar 

  101. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429.e19 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gladwin, M. T., Crawford, J. H. & Patel, R. P. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic. Biol. Med. 36, 707–717 (2004).

    CAS  PubMed  Google Scholar 

  103. Forstermann, U., Xia, N. & Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 120, 713–735 (2017).

    PubMed  Google Scholar 

  104. Natanson, C., Kern, S. J., Lurie, P., Banks, S. M. & Wolfe, S. M. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299, 2304–2312 (2008).

    CAS  PubMed  Google Scholar 

  105. Sansanayudh, N. et al. Mean platelet volume and coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiol. 175, 433–440 (2014).

    PubMed  Google Scholar 

  106. Kaplan, G. A. & Keil, J. E. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation 88, 1973–1998 (1993).

    CAS  PubMed  Google Scholar 

  107. Davies, N. M., Dickson, M., Davey Smith, G., van den Berg, G. J. & Windmeijer, F. The causal effects of education on health outcomes in the UK Biobank. Nat. Hum. Behav. 2, 117–125 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Carter, A. R. et al. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ 365, l1855 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Walker, V. M., Kehoe, P. G., Martin, R. M. & Davies, N. M. Repurposing antihypertensive drugs for the prevention of Alzheimer’s disease: a Mendelian randomization study. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyz155 (2019).

    Article  PubMed Central  Google Scholar 

  110. Padmanabhan, S., Aman, A. & Dominiczak, A. F. Recent findings in the genetics of blood pressure: how to apply in practice or is a moonshot required? Curr. Hypertens. Rep. 20, 54 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  112. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    CAS  PubMed  Google Scholar 

  113. Davis, A. P. et al. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res. 47, D948–D954 (2019).

    CAS  PubMed  Google Scholar 

  114. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).

    CAS  PubMed  Google Scholar 

  115. Jhamb, D., Magid-Slav, M., Hurle, M. R. & Agarwal, P. Pathway analysis of GWAS loci identifies novel drug targets and repurposing opportunities. Drug Discov. Today 24, 1232–1236 (2019).

    CAS  PubMed  Google Scholar 

  116. Tragante, V. et al. Druggability of coronary artery disease risk loci. Circ. Genom. Precis. Med. 11, e001977 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stasch, J. P., Pacher, P. & Evgenov, O. V. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123, 2263–2273 (2011).

    PubMed  PubMed Central  Google Scholar 

  118. O’Connor, C. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    PubMed  Google Scholar 

  119. Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. (2020).

  120. Rizvi, S. M. et al. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer’s disease-diabetes type 2 linkage via an enzoinformatics study. CNS Neurol. Disord. Drug Targets 13, 447–451 (2014).

    CAS  PubMed  Google Scholar 

  121. DrugBank. Olanzapine. DrugBank https://www.drugbank.ca/drugs/DB00334 (2020).

  122. DrugBank. Topiramate. DrugBank https://www.drugbank.ca/drugs/DB00273 (2020).

  123. Minari, J., Brothers, K. B. & Morrison, M. Tensions in ethics and policy created by National Precision Medicine Programs. Hum. Genomics 12, 22 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Stefanie Lip (University of Glasgow, UK) for designing Fig. 1 for submission. S.P. is funded by the Medical Research Council (MR/M016560/1), the British Heart Foundation (PG/12/85/29925, CS/16/1/31878, RE/18/6/34217), Health Data Research UK and Chief Scientist Office, Scotland. A.F.D. acknowledges funding from UK Research and Innovation Strength in Places Fund (SIPF) 35049.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Anna F. Dominiczak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks D. Arnett, M. Irvin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Comparative Toxicogenomics Database: http://ctdbase.org/

DrugBank: https://www.drugbank.com/

GWAS Catalog: https://www.ebi.ac.uk/gwas/

PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk/

Trans-Omics for Precision Medicine programme: https://www.nhlbi.nih.gov/science/trans-omics-precision-medicine-topmed-program

Glossary

Genome-wide association studies

(GWAS). Hypothesis-free methods that involve rapidly scanning hundreds of thousands of common genetic variations across the DNA of large numbers of individuals to find genetic variants that are associated with a particular disease.

Single-nucleotide polymorphisms

(SNPs). Naturally occurring, single-base substitutions in the human genome with a population frequency >1%. SNPs occur approximately once every 1,000 nucleotides throughout the genome, which means that roughly 4–5 million SNPs occur in a person’s genome.

Purifying selection

Natural selection can be of two types based on its effect on the fate of genetic variations: purifying (negative) selection and positive (Darwinian) selection. Purifying selection is the most prevalent form of selection because it leads to the constant elimination of deleterious variants that are produced in each generation.

Phenome-wide association studies

(PheWAS). Studies in which the association between single-nucleotide polymorphisms (SNPs) or other types of DNA variant is tested across a large number of different phenotypes. The direction of inference in a PheWAS is from a SNP to multiple phenotypes, whereas in genome-wide association studies it is from one phenotype to multiple SNPs.

Pleiotropy

A phenomenon whereby a genetic variant influences multiple traits and can involve a variant having effects on two or more traits via independent pathways (variants in FBN1 cause Marfan syndrome, with abnormalities in the heart, blood vessels, eyes, bones and joints) or because the effect on one trait is causally related to variation in another trait (variants that increase LDL-cholesterol levels are also associated with coronary artery disease).

Heterozygote advantage

When the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. A classic example is sickle-cell anaemia, in which sickle-cell phenotype carriers have a heterozygote advantage over the reproductive fitness of normal homozygotes in malaria-endemic regions.

Tag SNPs

Linkage disequilibrium results in a high degree of correlation among nearby single-nucleotide polymorphisms (SNPs), whereby most SNP sites convey redundant information and can be omitted for cost-effectiveness during genotyping. Tag SNPs are used to tag a particular haplotype in a region of the genome and genome-wide association studies (GWAS) SNP arrays use a set of representative (tag) SNPs that sufficiently represent the genomic diversity in the study population.

Linkage disequilibrium

The non-random association of alleles at two or more loci in a general population. This property has multiple uses, including detecting sites of past selection in human populations. The fine-scale pattern of linkage disequilibrium shows that the human genome is composed of haplotype blocks within which most or all single-nucleotide polymorphisms (SNPs) are in high linkage disequilibrium, which led to the development of efficient designs of SNP arrays for genome-wide association studies.

Polygenic risk score

A single-value estimate of an individual’s genetic liability to a phenotype, calculated as a sum of the genome-wide genotypes weighted by corresponding genotype effect size estimates derived from genome-wide association studies (GWAS) data. Classic polygenic risk scores include a reduced set of single-nucleotide polymorphisms (SNPs), for instance, only SNPs with a GWAS P value below a specified threshold. Other methods include millions of SNPs, explicitly modelling the correlation structure between SNPs without identifying a minimal subset of SNPs for prediction.

Mendelian randomization

Studies using genetic variation as a natural experiment to investigate the causal relationships between potentially modifiable risk factors and diseases or phenotypes. The idea behind Mendelian randomization is that, because genetic variants are fixed at conception, they are not affected by confounding or reverse causation, which blight causal inferences in conventional observational studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanabhan, S., Dominiczak, A.F. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol 18, 235–250 (2021). https://doi.org/10.1038/s41569-020-00466-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00466-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing