Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted desialylation and cytolysis of tumour cells by fusing a sialidase to a bispecific T-cell engager

Abstract

Bispecific T-cell engagers (BiTEs) bring together tumour cells and cytotoxic T cells by binding to specific cell-surface tumour antigens and T-cell receptors, and have been clinically successful for the treatment of B-cell malignancies. Here we show that a BiTE–sialidase fusion protein enhances the susceptibility of solid tumours to BiTE-mediated cytolysis of tumour cells via targeted desialylation—that is, the removal of terminal sialic acid residues on glycans—at the BiTE-induced T-cell–tumour-cell interface. In xenograft and syngeneic mouse models of leukaemia and of melanoma and breast cancer, and compared with the parental BiTE molecules, targeted desialylation via the BiTE–sialidase fusion proteins enhanced the formation of immunological synapses, T-cell activation and T-cell-mediated tumour-cell cytolysis in the presence of the target antigen. The targeted desialylation of tumour cells may enhance the potency of therapies relying on T-cell engagers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Removal of sialic acid enhances BiTE-induced T-cell cytotoxicity and activation.
Fig. 2: Desialylation promotes stronger BiTE-mediated IS formation rather than suppressing the inhibitory Siglec signalling.
Fig. 3: Construction of 4D5 BiTE–sialidase fusion proteins for selective desialylation of HER2-positive cells.
Fig. 4: 4D5 BiTE–sialidase exhibits better activities than 4D5 BiTE for killing HER2-positive target cells and activating T cells.
Fig. 5: 4D5 BiTE–sialidase promotes stronger IS formation between SK-BR-3 cells and Jurkat cells.
Fig. 6: BiTE–sialidase exhibits better tumour control than BiTE in vivo.
Fig. 7: EGFR BiTE–sialidase shows improved tumour control by altering the composition of tumour-infiltrating immune cells in a syngeneic mouse model of melanoma.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Gene-expression data obtained by RNA-seq are available from the NCBI Gene Expression Omnibus, via the accession number GSE245991. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Goebeler, M.-E. & Bargou, R. C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  2. Przepiorka, D. et al. FDA approval: blinatumomab. Clin. Cancer Res. 21, 4035–4039 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Arvedson, T. et al. Targeting solid tumors with bispecific T cell engager immune therapy. Annu. Rev. Cancer Biol. 6, 17–34 (2021).

    Article  Google Scholar 

  4. Singh, A., Dees, S. & Grewal, I. S. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br. J. Cancer 124, 1037–1048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl Acad. Sci. USA 99, 10231–10233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Magalhães, A., Duarte, H. O. & Reis, C. A. Aberrant glycosylation in cancer: a novel molecular mechanism controlling metastasis. Cancer Cell 31, 733–735 (2017).

    Article  PubMed  Google Scholar 

  8. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Pearce, O. M. & Läubli, H. Sialic acids in cancer biology and immunity. Glycobiology 26, 111–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues, E. & Macauley, M. S. Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities. Cancers 10, 207 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murugesan, G., Weigle, B. & Crocker, P. R. Siglec and anti-Siglec therapies. Curr. Opin. Chem. Biol. 62, 34–42 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, B. A. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 20, 217–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar, L. J. et al. Sialic acid ligands of CD28 suppress costimulation of T cells. ACS Cent. Sci. 7, 1508–1515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Büll, C. et al. Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res. 78, 3574–3588 (2018).

    Article  PubMed  Google Scholar 

  16. Stanczak, M. A. et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J. Clin. Invest. 128, 4912–4923 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89, 4285–4289 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore, P. A. et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood J. Am. Soc. Hematol. 117, 4542–4551 (2011).

    CAS  Google Scholar 

  19. Sela, D. A. et al. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 286, 11909–11918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10, 69–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, L. et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Cancer 1, 86–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Correnti, C. E. et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia 32, 1239–1243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skokos, D. et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci. Transl. Med. 12, eaaw7888 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Leitner, J., Herndler-Brandstetter, D., Zlabinger, G. J., Grubeck-Loebenstein, B. & Steinberger, P. CD58/CD2 is the primary costimulatory pathway in human CD28 CD8+ T cells. J. Immunol. 195, 477–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Demetriou, P. et al. A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals. Nat. Immunol. 21, 1232–1243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, Y. et al. Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway. J. Immunother. Cancer 10, e004348 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ley, K. & Kansas, G. S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sackstein, R., Schatton, T. & Barthel, S. R. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97, 669–697 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sackstein, R. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunol. Rev. 230, 51–74 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang, P. et al. Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat. Methods 18, 1181–1191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eberle, C., Rowe, J., Fiore, A., Mihalek, R. & Festin, S. 199 enhanced immune responses in human breast and colon cancer following checkpoint therapy in a CD34+ stem cell humanized NCG (HuCD34NCG) mouse model. J. Immunother. Cancer 8, A214 (2020).

  33. Bekesi, J. G., Arneault, G. S., Walter, L. & Holland, J. F. Immunogenicity of leukemia L1210 cells after neuraminidase treatment. J. Natl Cancer Inst. 49, 107–118 (1972).

    CAS  PubMed  Google Scholar 

  34. Bekesi, J. G., Roboz, J. P. & Holland, J. F. Therapeutic effectiveness of neuraminidase-treated tumor cells as an immunogen in man and experimental animals with leukemia. Ann. N. Y. Acad. Sci. 277, 313–331 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Sedlacek, H., Hagmayer, G. & Seiler, F. Tumor therapy of neoplastic diseases with tumor cells and neuraminidase. Cancer Immunol. Immunother. 23, 192–199 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Xiao, H., Woods, E. C., Vukojicic, P. & Bertozzi, C. R. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc. Natl Acad. Sci. USA 113, 10304–10309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gray, M. A. et al. Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat. Chem. Biol. 16, 1376–1384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stanczak, M. A. et al. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Sci. Transl. Med. 14, eabj1270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greco, B. et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Sci. Transl. Med. 14, eabg3072 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Vuchkovska, A. et al. Siglec-5 is an inhibitory immune checkpoint molecule for human T cells. Immunology https://doi.org/10.1111/imm.13470 (2022).

    Article  PubMed  Google Scholar 

  41. Dobie, C. & Skropeta, D. Insights into the role of sialylation in cancer progression and metastasis. Br. J. Cancer 124, 76–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Yogeeswaran, G. & Salk, P. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 212, 1514–1516 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. Bresalier, R. S. et al. Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110, 1354–1367 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Bull, C. et al. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano 9, 733–745 (2015).

    Article  PubMed  Google Scholar 

  45. Herrmann, M. et al. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood J. Am. Soc. Hematol. 132, 2484–2494 (2018).

    CAS  Google Scholar 

  46. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Heidbuechel, J. P. & Engeland, C. E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol. 14, 1–24 (2021).

    Article  Google Scholar 

  48. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (to P.W. R01AI154138, to J.R.T. R01AI143884 and to D.L. R01AI130197). J.Z. is a recipient of the Cancer Research Institute/Irvington postdoctoral fellowship. We thank N. Lerner and J. R. Cappiello for their critical comments on the paper and L. Liu and Y. Fu for providing the B16-E5 cell line.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y., R.A.L. and P.W. conceived and designed research studies. Z.Y. and P.W. wrote the paper and analysed the data and prepared the figures. J.Z. and J.R.T. performed analysis on the transcriptome sequencing results. J.H.C. and D.L. performed immunological synapse formation and confocal imaging for BiTE–sialidase fusion protein and analysed the data. Z.Y., Y.H., G.G., C.W., Y.W., K.Q. and Y.S. performed all experiments described in the paper. All authors reviewed and edited the paper. P.W. finalized the paper.

Corresponding author

Correspondence to Peng Wu.

Ethics declarations

Competing interests

P.W., Z.Y. and K.Q. were listed as inventors of Sialidase Fusion Molecules and Use, a US patent application no. 63/338,134 filed in May 2022. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Heinz Läubli, Sandra van Vliet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data for Figs. 6 and 7

Source data for tumour burden.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Hou, Y., Grande, G. et al. Targeted desialylation and cytolysis of tumour cells by fusing a sialidase to a bispecific T-cell engager. Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01202-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01202-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing