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Symmetry breaking in optimal transport
networks

Siddharth Patwardhan 1, Marc Barthelemy2,3 , Şirag Erkol4,
Santo Fortunato1 & Filippo Radicchi 1

Engineeringmultilayer networks that efficiently connect sets of points in space
is a crucial task in all practical applications that concern the transport of
people or the delivery of goods. Unfortunately, our current theoretical
understanding of the shape of such optimal transport networks is quite lim-
ited. Not much is known about how the topology of the optimal network
changes as a function of its size, the relative efficiency of its layers, and the cost
of switching between layers. Here, we show that optimal networks undergo
sharp transitions from symmetric to asymmetric shapes, indicating that it is
sometimes better to avoid serving a whole area to save on switching costs.
Also, we analyze the real transportation networks of the cities of Atlanta,
Boston, and Toronto using our theoretical framework and find that they are
farther away from their optimal shapes as traffic congestion increases.

Networks that provide optimal transport properties1,2 are of interest in
many different disciplines ranging from the study of natural systems
such as water transport in plants3, veination patterns in leaves4,5, river
basins6 to the design of transportation infrastructures, either from an
applied point of view7, or from a more mathematical perspective8. In
particular, transportation networks evolve in time and their structure
has been studied in many contexts from street networks to railways
and subways9–15. The evolution of transportation networks is also
relevant to biological cases such as the growth of slime mould16 or
social insects17,18.

An important problem consists in designing a network from
scratch or extending an existing network; this is a central subject in
transportation and location science, usually known as the network
design problem19. Such a problem, applied to rapid transit networks,
for example, is divided into three sub-problems, which are solved
numerically: location of new stations, construction of the corenetwork
connecting these stations, and location of intermediate stations on the
network. From an engineering point of view, this type of problem can
be solved with various optimization methods on practical cases, but
the general behavior of optimal solutions is not known. From a purely
mathematical point of view, there have been extensive studies of

optimal networks over a given set of nodes (such as the minimum
spanning tree20, or other optimal trees21). Some of these problems
allow for extra chosen nodes such as the Steiner tree problem22, or
geometric location problems in which demand points are to be mat-
ched with supply points23. Another example is the much-studied
Monge-Kantorovich mass transportation problem24, involving match-
ing points fromonedistributionwith points fromanother distribution.

The main problem in network design is fundamentally different.
We are given the density of population and we are looking for the
network that minimizes some objective function involving some
average time, in general (although other choices are possible, see for
example7). In this setting, there are usually two different transport
modes, a slow one representing for example cars on the road network,
and a fast one representing the subway or some rapid transit network.
The natural framework here is then the one of multiplex networks
comprising two different transportation networks, one known while
the structure of the second one is to be determined (formultiplexes in
the context of optimization see for example25). A practical realization
of this problem concerns the specific case of subways (for a network
analysis of subways, see for example10,26–34). In most large cities, a
subway system has been built and later enlarged, with current total
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lengths varying from a few kilometers to a few hundred kilometers.
The geometry of these networks, as its total length increases, varies
from simple lines to more complex shapes with loops for larger
networks35,36. In particular, for the largest networks, convergence to a
structure with a well-connected central core and branches reaching
out to suburbs has been observed10.

Algorithmic aspects of network design have been studied within
computational geometry (e.g.,37 chapter 9) and location science (e.g.,7

and references therein), and some simpler problems of this type have
been addressed previously. For instance, the problem of the quickest
access between an area and a given point was discussed in38,39. In
network science, the optimization problem is traditionally recast as a
navigation problem in lattices with long-range connections40,41. How-
ever, our specific question – optimal network topologies as a function
of population distribution and network length – is largely an open
problem. In36, some results were obtained in two-dimensional systems
by comparing a priori defined optimal network configurations. First, it
was shown that, if the goal is reaching a single point in the plane, then
the optimal network is necessarily a tree. Second, the paper hinted at
the possibility of the existence of transitions between optimal con-
figurations when the length of the network changes. More precisely, it
has been shown that as the length of the network increases resources
go preferentially to radial branches and that there is a sharp transition
at a critical value of the length where a loop appears.

In thispaper,weaddress theproblemof thequickest average time
to access a central point using a multiplex framework (see Fig. 1). We
are given the structure of one layer, and we are allowed to build an
additional layer that can facilitate quicker access to the central point.
The new layer is characterized by a faster speed than the existing, slow
layer; however, changes of layers incur a cost. We study the optimi-
zation problem of finding the best configuration of the fast layer on
systems of arbitrary dimensions. We solve exactly the optimization
problem for one-dimensional systems, showing that the optimal fast-
layer configuration undergoes a sharp transition between a perfectly
symmetric configuration and a fully asymmetric configuration. We
numerically show that such symmetry breaking in optimal networks
occurs in systems of arbitrary dimensions. We specifically focus on
two-dimensional lattices and perform a systematic study of transpor-
tation systems within real cities, where we use the slow layer to model
the road network and the fast layer to model the subway network. We
find that real subways display network topologies compatible with the
optimal ones that can be obtained using our computational frame-
work. Differences between real and optimal networks typically arise as
the ratio between subway and car speeds increases.

Results
Multiplex transportation model
We consider a well-established network model for multimodal trans-
portation systems (see Methods and Supplementary Information
Section 1 for details)12,42,43. The model comprises two network layers,
namely a slow layer G whose set of edges is denoted with S and a fast
layerH whose set of edges is F . The layers denote different modes of
transportation, e.g., cars and subways. Each node n in the slow layer
has a mirror image, or replica, in the fast layer F(n). For example, we
can think of node n in the slow layer as an intersection between roads,
and of F(n) in the fast layer as the subway station corresponding to that
intersection. The system is such that edges in the fast layer are a subset
of the replica edges of the slow layer; essentially, not all roads are
mirrored by subway segments.We assume that edges in the two layers
are traversed at different speeds, and without loss of generality, we
parameterize the speed ratiowith 0≤η≤1. Agents departing fromnodes
in the slow layer move along their quickest path towards a specific
node o in the slow layer, the so-called center of the network. These
quickest paths can involve edges in both layers; however, each change
of layer, happening between replica nodes, has a cost equal to c≥0. See

Fig. 1 for a schematic example. For a given configuration F of the fast
layer, we can find the minimum-cost path of each node n in the slow
layer to the center o. We then measure the efficiency of F in terms of
the average time to reach the center, i.e.,

τðF Þ=
P

n2G dn pnP
n2G pn

: ð1Þ

Here, dn is the cost of the fastest path of the generic node n to o.
Also, we assume that each node n in the slow layer has an associated
weight or demand pn≥0. In a real city, pn is proportional to the actual
density of population associated with node n. τðF Þ is computed over
all nodes in the slow layer only, but eventual minimum-cost paths can
take advantage of edges in the fast layer.

The goal of ourmodeling framework is finding the best or optimal
configuration F * of the fast layer, i.e., the configuration that corre-
sponds to the minimum value of the average time to reach the center
starting from the nodes of the slow layer. The optimization problem
defined in Eq. (4) is constrained by the number of edges L can be used
to form the fast layer. Note that L is interpreted as the cost of building
the fast layer, hence is measured in the same units as τ and c. We are
interested in providing a full characterization of the topology of the
optimal fast layer as a function of the parameters η and c of the mul-
tiplex transportation model. We study this optimization problem
under different settings determined by the topology of the slow layer.

Symmetry breaking
We begin our investigation by studying a one-dimensional version of
our model (see Methods for details). For simplicity, the model is
thought in continuous space. However, the calculations and results
can be immediately generalized to a one-dimensional discrete lattice.
The slow layer consists of a segment of length 2R extending symme-
trically around the origin or center o. In the computation of the con-
tinuous version of the objective function of Eq. (1), we further assume
that all parts of the slow layer have equal weight, i.e., pn = const. An
illustration of the system is shown in Fig. 2.

We remind that the problem is finding the optimal configuration
of the fast layer such that the average cost to reach the center fromany
point of the slow layer is minimum (see Eqs. (1) and (4)). The optimi-
zation problem is constrained by the fact that the fast layer has a fixed
cost L, with L≤R. We mathematically prove that the topology of the
optimal fast layer undergoes a series of phase transitions depending
on the values of the model parameters L, η, and c.

A first, trivial critical point is given by rc = 2c/(1− η) (see also Eq. (3)
in “Methods”): there is no advantage in having a fast layer with length
L≤rc, as a fast layer with such a cost is not used in any minimum-cost
paths to the center. The optimization problem is then subject to the
constraint that the fast layer should be of length rc≤L≤R.

As we prove in the Supplementary Information Section 3, solu-
tions to this optimization problem are given by connected segments
that include the replica of the center F(o). We can then parameterize
the optimal fast layer by a single quantity 0≤α≤1/2, such that the fast
layer extends over a length αL to the right of F(o) and over (1 − α)L to
the left of F(o).Wefind thatonly two configurations for theoptimal fast
layer are possible: (i) a completely asymmetric configuration obtained
for α = α* = 0 (when L≤L†); (ii) a completely symmetric configuration
obtained for α = α* = 1/2 (when L≥L†). The critical value L† where the
transition occurs is

Ly =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Rrc � 2r2c

q
: ð2Þ

Typical phase diagrams are displayed in Fig. 2. We clearly see a
discontinuous transition between the symmetric and the asymmetric
optimal configurations as the parameters of the model vary. This is a
rather surprising result as it indicates that, under certain
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circumstances, the optimal solution is obtained by constructing a fast
layer only on one side of the system. In other circumstances instead, a
symmetric configuration is more advantageous than the asym-
metric one.

The physical intuition behind this curious behavior is as follows.
Constructing a fast layer requires an initial waste of resources, as only
parts of the slow layer whose minimum cost to reach the center is at
least rc take effective advantage of the fast layer. Such an initial
investment consists of building a fast layer such that L≥rc for the
asymmetric case, but L≥2rc for the symmetric configuration.Hence, for
rc≤L≤2rc, the asymmetric configuration is trivially preferred over the
symmetric one; however, the situation is not immediately inverted for
L≥2rc. As a matter of fact, any further extension of a branch of the fast
layer leads to a reduction of the time to reach the center for all parts of
the slow layer that are served by that branch. However, the objective
function is subject to a diminishing return as the branch of the fast

layer grows towards the boundary of the system. As L increases, the
only branch of the asymmetric configuration grows twice as fast
towards the boundary than the two branches of the symmetric con-
figuration. Thus, the initial advantage of building an asymmetric fast
layer over a symmetric one is still present for L≥2rc, but the gap nar-
rows as the size L of the fast layer increases. The critical value L† of Eq.
(2) denotes the size of the fast layer when the two configurations
generate identical reduction in travel time to the center and, for L≥L†

the symmetric configuration is preferred over the asymmetric one.
The diminishing-return property of the objective function explains
also why the optimal configuration for L≥L† must be symmetric. If we
alter in fact the symmetric configuration by reducing one branch in
favor of the other, then the increase of the objective function induced
by the reduction of the one branch will be larger than the decrease of
the objective function induced by the extension of the other branch.
Hence, by altering the symmetric configuration, we will necessarily
increase the average time to reach the center for the overall system.

As we prove in the Supplementary Information Section 6, sym-
metry breaking occurs not only for pn = const., but for arbitrary func-
tions pn that are symmetric with respect to the center of the network;
however, the value of the transition point between the symmetric and
the asymmetric phases depends on the specific functional form of pn.

Although we have mathematical support for the above inter-
pretation only in one-dimensional systems, we believe that the general
principle of symmetry breaking applies to any network regardless of
the dimensionof the spacewhere the network is embedded. Indeed, in
our numerical experiments we do observe symmetry breaking in the
geometry of the optimal configuration of the fast layer also in systems
with dimension d > 1. We discuss these findings below.

Wefirst extend our analysis to two-dimensional triangular lattices.
The center o of the slow layer is identified by the site corresponding to
the geometric center of the lattice and all other nodes in the layer are
identified by lattice sites at distance at most R from such a center, see
Methods for details. Due to the computational complexity of the
optimization problem of Eq. (4), optimal configurations of the fast
layer cannot be determined exactly in this case. We rely instead on the
greedy optimization strategy described in the Supplementary Infor-
mation Section 4. The submodularity of the objective function of Eq.
(1) thatwe prove in the Supplementary Information Section 4 allows us
to use this algorithm to generate, in a time that roughly grows as R2.7,
approximate solutions to the optimization problem of Eq. (4) that are
at most a factor (1 − 1/e)≃0.63 above the ground-truth minimum44.

Fig. 1 | Illustration of the multiplex transportation model. In the slow layer
(blue), the time required to traverse an edge equals one; in the fast layer (orange),
each edge is traversed in a time reduced by a factor 0≤η≤1. Replica nodes across
layers are connected by edges whose transit time is c≥0 denoted by the dashed
segments. Two possible paths connecting the white node to the center node given
in red are shown. Thepath shownbygrayarrows requires a total timeequal to 2 as it
uses only twoedges in the slow layer. The secondpath, highlighted byblackarrows,
involves two changes of layer, one edge in the fast layer, and one edge in the slow
layer, resulting in a total transit time equal to 1 + η + 2c. The second path is faster
than the first one as long as 1 + η + 2c < 2.

Fast layer

Fast layer

Slow layer

Slow layer

Fig. 2 | Symmetry breaking in one-dimensional systems. a, bWe consider a slow
layer given by a segment of length 2R that extends symmetrically around its center
(red circle). The fast layer is given by a segment of length L, with a portion of length
αLon the right of the center and aportion of length (1 − α)Lon the left of the center,
where 0≤α≤1/2. In the figure, we use R = 7 and L = 4. As we prove in the Methods
section and in the Supplementary Information Section 6, two optimal configura-
tions are possible for the fast layer: (a) an asymmetric one, i.e., α = α* = 0, and (b) a
symmetric one, i.e., α = α* = 1/2. c Optimal configuration of the fast layer as a

function of the model parameter L and the switching cost c. Here the ratio of the
speeds of the fast and the slow layers is η =0.1. We distinguish three regions: (i) for
L≤rc, with rc = 2c/(1 − η) as defined in Eq. (3) and represented by the dashed black
line, the fast layer is not used; (ii) for rc≤L≤L†, with L† defined in Eq. (2) and repre-
sentedby thewhite dashedcurve, thenα* = 0; (iii) for L≥L†, thenα* = 1/2.d Sameas in
(c), but the optimal geometry of the fast layer is estimated as a function of c and η

for L = 1. The black dashed line is identified by the condition rc = L; the white dashed
line is given by Eq. (10).
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Typical solutions obtained using greedy optimization are dis-
played in Fig. 3a, b, and c. Here, we assume that the weight associated
with each node n of the slow layer is pn = const. As discussed in the
Methods section and proved in the Supplementary Information Sec-
tion 3, optimal configurations of the fast layer are given by treeswith at
least one edge incident to F(o). However, depending on the choice of
the model parameters L, η and c, different optimal configurations may
emerge. As for the one-dimensional case, also here optimal config-
urations of the fast layer appear to be characterized by branches of
similar length, so that different optimal configurations can be dis-
tinguished by simply counting the number of suchbranches, namely k*

as defined in Eq. (5). We do observe k* = 1, 2 and 3 in Fig. 3a, b and c,
respectively. Please note that this simple characterization of the geo-
metry of the fast layer is valid only in the regime L <R. For larger sizes
of the fast layer, the geometry of the optimal configurations becomes
much richer and requires additional order parameters to be described;
in this paper, we only consider phase transitions concerning fast layers
whose size is much smaller than the one of the slow layer.

Typical phase diagrams are shown in Fig. 3d, e, and f. As for the
one-dimensional continuous model, we observe that a fully asym-
metric configuration emerges for large c values, see Fig. 3d, e, and f; as
L increases,we observe transitions towards larger number of branches,
see Fig. 3f. In Fig. 4d, we validate the goodness of the solutions
obtained via greedy optimization by comparing them with solutions
obtained via simulated-annealing optimization (see Supplementary
Information Section 4 for details).

In the Supplementary Information Section 6, we consider a
continuous-space approximation of the two-dimensional lattice. The
results of our analysis are qualitatively similar to those valid for the
discrete lattice, with the only caveat that optimal configurations of the
fast layer can be characterized by an unbounded number of branches.
In the Supplementary Information Section 5, we also consider two-
dimensional lattices where the weight pn is an exponentially decreas-
ing functionof the latticedistanceof noden to the center o. Results are
qualitatively similar to those reported in Fig. 3 in that setting too.

Our findings on the breaking of the symmetry of the optimal fast
layer generalize also to infinite-dimensional systems.

In the Supplementary Information Section 6, we consider a
continuous-space approximation of a star-like system where the slow
layer is given by an arbitrary number q of segments intersecting in a
single point andextending symmetrically around this centralpoint.We
can prove analytically that the only allowed solutions to our optimi-
zationproblemaregiven by fast layers consistingof 1≤n*≤qbranches of
identical length L/n*. As in the case of the one- and two-dimensional
systems, also for the star-like system we observe that n* = 1 for suffi-
ciently large c values, and that n* grows as L increases.

The same qualitative behavior is also observed in numerical
simulations on one instance of the Erdős-Rényi model with N = 1000
nodes and average degree 〈k〉 = 4. For simplicity, in our simulations, we
select the node with the largest degree kmax = 11 as the center of the
slow layer. We then determine the optimal configuration of the fast
layer via greedy optimization. We observe transitions between con-
figurations of the optimal fast layer with variable number of branches
0≤ k* ≤ kmax dependingon the choiceof themodel parameters. Results
of these simulations are reported in the Supplementary Informa-
tion Fig. 3.

Real-world cities
In this section, we study the properties of the subway systems in
Atlanta, Boston, and Toronto under the lens of our framework. We
choose monocentric cities, fairly isolated from other major urban
centers, with a tree-like subway structure. We identify the intersection
point of the real subway lines in all three cases as the city center. We
see that this point corresponds to the downtown area in the three
cities.

First, we incorporate real population data in our model. We rely
on a two-dimensional triangular lattice multiplex model; we use the
population data and the appropriate coordinates reference systems to
impose the triangular lattice structure onto the city landscape. Details
on the data and modeling of the city population distribution can be
found in the Methods section. We denote all quantities relative to the
real physical system using the same notation as for the multiplex
model, but we add a tilde on top of the corresponding symbol. For
example, R indicates the radius of the lattice model, and ~R denotes the

Fig. 3 | Symmetry breaking in two-dimensional systems. a Symmetric optimal
configuration of the fast layer with k* = 3 branches. Here R = 25 and L = 12.
b Symmetric optimal configuration of the fast layer with k* = 2 branches obtained
for radius R = 25 and length of fast layer L = 12. c Asymmetric optimal configuration
of the fast layer with k* = 1 branch valid for R = 25 and L = 12. d Average time to the
center, i.e., Eq. (1) associated with the optimal fast-layer configuration as a function

of the switching cost c. Here, R = 25, L = 12 and the relative speed η =0.1. We com-
pare solutions obtained using greedy and simulated-annealing optimization. The
vertical dashed lines correspond to the values of cwhereweobserve a change in the
topology of the optimal fast layer. e Number of branches characterizing the
topology of the optimal fast layer as a function of L and c. Here, R = 100 and η =0.1.
f Same as in (e), but as a function of η and c, with L = 50.
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radius of the city. Overlaying a city on top of the triangular lattice
allows us to associate a weight ~pn to each node n in the slow layer that
reflects the real population density within the city. We use those
weights in the objective function of Eq. (6), and then take advantage of
the greedy algorithm to obtain approximate solutions to the optimi-
zation problem of Eq. (4). Similar to the previous sections, we obtain
two classes of optimal fast-layer configurations for all the considered
parameters. Results for the city of Toronto are displayed in Fig. 4,
where we see that optimal configurations comprise k* = 1 (Fig. 4a) or
k* = 2 (Fig. 4b) branches. Similar results are valid for Atlanta and Bos-
ton, where we observe optimal configurations with k*≤3 branches (see
Supplementary Information Figure 11). For k* > 1, we note that the
branches have no identical length; this is caused by the fact that the
weight associatedwith the various nodes of the system is not constant.
A typical phase diagram for Toronto is displayed in Fig. 4c, where we
fix η =0.5, but vary L and c. The diagram is qualitatively similar to the
one of Fig. 3e. For fixed c, k* increases as L grows; however, for fixed
L, k* decreases as c grows. The values of the parameters where the
transitions between the various phases emerge differ from those of
Fig. 3e; this is due to the non-homogeneous density of the population
used in themodel of the city. Similar results for Atlanta andBoston can
be found in the Supplementary Information Figure 11.

Next, we perform a direct comparison between the real subway
lines and the optimal fast-layer configurations obtained using our
computational framework. To this end, we calibrate the model’s
parameters L and R such that the number of subway stations in the
real system is comparable with the one in the model. Results of this
analysis are reported in Fig. 5 for Toronto and in the Supplementary
Information Fig. 12 for Atlanta and Boston. We first note that the
optimal fast-layer networks display additional ramifications. This is
due to the fact that L > R in this experimental setting. Second and
more important, we note that there is an overall good overlap
between the real subways and those obtained under the framework.
This is true regardless of the specific choice of themodel parameters
(Fig. 5a, b). We quantify the efficiency of the real subway systems
relative to the optimal configurations by measuring the ratio of the
corresponding values of the objective function of Eq. (6), see Fig. 5c.
Here, we keep the speed of the fast layer invariant as ~vf =40 km h�1,
and vary the speed of the slow layer ~vs . This corresponds to effec-
tively varying the value of the model parameter η. The real subway
system appears less efficient than the optimized one in congested
situations when ~vs is small. However, it gets close to optimality as the
speeds in the slow layer grows towards the value of the speed of the
fast layer.

Fig. 5 | Assessing the optimality of the transportation networks of real cities.
a We compare the subway network generated with our optimization framework
(white curves)with the real subwaysystem (black curves) in the cityof Toronto. The
optimized configuration is obtained by setting radius R = 25, relative speed η =0.5,
and switching cost c = 1.25 in the lattice model. These choices correspond to set-
ting, in the physical system, the speed of the slow and fast layers respectively to
~vs = 20 km h�1 and ~vf =40 km h�1, and the switching timebetween layers to 3min.
The latter setting means that 6 minutes are required to change mode of trans-
portation, since the actual cost associated to the useof the fast layer is 2c.b Sameas

in (a), but for ~vs = 5 km h�1. We also set c =0.3125 in the lattice model so that the
switching time in the physical system still equals 3 mins. c The efficiency of the real
subway systems relative to the optimal configurations as a function of the speed of
the slow layer ~vs . Relative efficiency is given by the ratio between the values of the
objective function estimated via Eq. (6) for the optimized and the real configura-
tions of the fast layer. As we vary ~vs , we change also the value of the parameter c in
the multiplex model so that the switching time in the physical system is equal to
3 mins, see “Methods” for details.

Fig. 4 | Symmetry breaking in the transportation networks of real cities. a We
consider the city of Toronto. We construct the slow layer of the system using a
triangular lattice radius R = 100; for the fast layer, we impose the length of the fast
layer L = 50. The colormap shows the populationdensity associatedwith the lattice
points; the gray lines represent census-tract boundaries. The red circle represents

the center. We show the optimal configuration of the fast layer with k* = 1 branch.
(b) Same as in (a), but we show the solution with k* = 2. c Phase diagram displaying
the value of k* as a function of model parameters L and c. Here the relative speed
η =0.5. The yellow region denotes L≤rc, where rc = 2c/(1− η).
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Discussion
Location science and network design focused on practical aspects of
network optimization. Even if operational research is successful in
designing minimal cost solutions, the theoretical question of the
optimal network topology is largely open. In addition, and as sus-
pected in previous studies, we showed that these optimal networks
experience a transition between different shapes when the total length
or the switching cost increase: small variations of the cost can lead to
strikingly dissimilar optimal structures. In particular, there is a transi-
tion characterized by a symmetry breaking leading to spatial inequal-
ities. Such aphenomenon results from the interplay between switching
cost and the absence of the network and shows that an optimal solu-
tion is not necessarily isotropic. Spatial inequality is known to happen
in various economic instances45. It was also observed in the context of
human mobility, e.g., car traffic46–49, self-organized pedestrian
movement50,51, commuting patterns52–54, and ride-sharing adoption55,56.
It is, however, the first time that spatial inequality is exhibited in an
optimal network context. Our results underscore the importance of
considering switching costs and the cost associatedwith the slow layer
(typically car traffic) when studying the optimal subway structures. A
better theoretical understanding of these optimal shapes could cer-
tainly be helpful for practical applications and the identification of
critical parameters. As optimal networks in transportation play a cru-
cial role in ensuring efficient, safe, and sustainable mobility within
urban (and regional) areas, we can expect our results to have some
practical implications on various aspects of cities such as efficient
mobility, cost-effectiveness, accessibility and connectivity, sustain-
ability, resilience and adaptability, and economic development. In
particular, optimal transportation networks support economic devel-
opment by facilitating the efficient movement of goods and services,
enhancing access to markets, and attracting investments and busi-
nesses to urban areas. Surprisingly enough, our findings show that
efficient transportation networks do not cover a whole area, but rather
focus on a smaller part of the area. This interplay between spatial
coverage and access cost leads to this surprising result, especially in
the light of general ideas about accessibility, well-connectedness that
stimulate economic activity, create jobopportunities, and improve the
competitiveness of cities and regions. More generally, we can expect
that for more complex objective functions – including resilience to
urban growth for example – the optimal solution is not necessarily a
spatially uniform one and we have to go beyond the paradigm of
homogeneous access.

Further studies are however needed in order to explore in more
depth these transitions. Also, we focused here on the monocentric
case where we minimize the average distance to reach a central node.
Large cities are however polycentric and the structure of flows is far
more complex. Preliminary results suggest that here also there are
transitions between different optimal shapes, but this point certainly
deserves further studies. Finally, the more difficult problem of mini-
mizing the average time needed to connect any pair of points is even
more open. In this case, the optimal network can have loops and is
computationally more demanding. Although we also expect transi-
tions, our understanding of this case is at the beginning.

Methods
Multiplex transportation model
We consider a multiplex network composed of a slow layer and a fast
layer (see Fig. 1). We denote with G the set of nodes in the slow layer,
and with S the set of its edges; H and F are respectively the set of
nodes and edges in the fast layer. Both layers contain N nodes; each
node n in the slow layer has a one-to-one correspondence with a node
F(n) in the fast layer. Each edge (F(n), F(m)) in the fast layer has a replica
edge (n,m) in the slow layer, but the vice versa is not necessarily true.
The transit time of each edge in the slow layer equals one, whereas
time required to traverse edges of the fast layer is reduced by a factor

0≤η≤1. Replica nodes are connected to each other by edges whose
transit time is c≥0. Please note that in this mathematical framework
entities havenophysicalmeaning, thuswe can interchange thenotions
of the length of an edge with that of the time required to traverse it,
and simply refer to them with the generic term cost.

When considered in isolation, the slow layer forms a single con-
nected component, whereas the fast layer is not necessarily connected.
The connectedness of the slow layer implies, however, that in the
overall system, composed of the interconnected slow and fast layers,
there exists at least a path connecting any pair of nodes. The cost of a
path in the network is given by the sum of the costs of all edges that
compose the path. The minimum-cost path between two nodes can
either use edges in the slow layer only or take advantage of some of the
edges in the fast layer (see Fig. 1). In particular, the path n→ F(n)→
F(m)→…→ F(r)→ F(s)→ s composed of ℓ edges in the fast layer only is
preferred to its replica path n→m→…→ r→ s whenever ℓ is larger than

rc =
2c

1� η
: ð3Þ

We identify a special node o in the slow layer of the network, i.e.,
the center of the network.We then define theweighted average cost to
the center as in Eq. (1).We stress that the objective function of Eq. (1) is
computedover all nodes in the slow layer only, but eventualminimum-
cost paths can take advantage of edges in the fast layer. Clearly, τ
depends on the various parameters of themodel. In Eq. (1), we explicit,
on purpose, only the dependence of τ on the fast layer F as this is the
primary object of our investigation. We consider in fact the optimi-
zation problem aimed at finding the best set of edges in the fast layer
able to minimize the objective function of Eq. (1). The minimization is
constrained by the number of edges L that are in the fast layer, with L
still measured in the same units of costs as τ and c. Specifically, we aim
at solving

F * = argminjF j = L τðF Þ, ð4Þ

where we indicated with jF j the number of edges in F .
Finding the exact solution to the optimization problem of Eq. (4)

is computationally infeasible as it requires a brute-force search over all

possible
jSj
L

� �
configurations of the fast layer. In the SM, we prove,

however, that: (i) the optimal configuration of the fast layer is a con-
nected treewith at least one edge incident to F(o), i.e., the replica node
of the center; (ii) the objective function of Eq. (1) is a decreasing and
submodular function. The relevance of property (i) is two-fold: first, it
allows us to dramatically reduce the number of suitable solutions for
the optimization problem of Eq. (4); second, it permits us to mean-
ingfully describe the geometry of the optimal fast layer in terms of the
number of branches departing from the replica node of the center, i.e.,

k* =
X

ðFðnÞ,FðmÞÞ2F *

δFðoÞ,FðmÞ + δFðnÞ,FðoÞ
h i

, ð5Þ

where δx,y = 1 if x = y and δx,y = 0 otherwise. Property (ii) allows us to
leverage a greedy optimization scheme to generate approximate
solutions to the optimization problem of Eq. (4) that are at most a
fraction (1 − 1/e) above the ground-truth minimum44. In the construc-
tion of greedy solutions,we start froman empty set of edges in the fast
layer, and we add one edge at a time. The edge that is added is the one
corresponding to the best choice that can be made given the current
set of edges in the fast layer. In the SM, we further describe how
solutions obtained via greedy optimization can be further refined to
get better approximations for the optimization problem of Eq. (4); the
quasi-optimality of our greedy solutions is validated by comparing
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them to those obtained via simulated-annealing optimization (see
Fig. 3 and SM for details).

Two-dimensional triangular lattices
The slow layer used in the definition of the multiplex transportation
model can be represented by any connected network. In the SM for
example, we report on results obtained for a slow layer given by an
instance of an Erdős-Rényi model.

The vastmajority of the results reported in thispaper areobtained
for slow layers derived from triangular lattices. The coordinates of all
sites of the lattice are in the form ða+ b

2 ,
ffiffi
3

p
b

2 Þ for integer values of a and
b such that ∣a∣ + ∣b∣≤R, whereR is the radius of the triangular lattice. The
boundary conditions give the system a hexagonal shape. The sites of
the lattice are the nodes of the slow layer; each pair of nodes in the
slow layer is connected if the corresponding sites are at distanceone in
the triangular lattice; we identify the center of the network as the site
with coordinates (0, 0), i.e., a = b =0.

Real-world cities
In this section, wedescribe howwemodel the transportation systemof
a real city. Our framework relies on the use of a multiplex network
formed of two discrete triangular lattices, one used to describe slow
transportation (e.g., cars) and the other used to model fast transpor-
tation (e.g., subways). As we are referring to a real physical system, all
quantities that describe properties of the multiplex transportation
model have an associated physical dimension. For simplicity, we still
rely on the same notation as in the previous sections, however, we add
a tilde on the top of the symbols tomake clear that the notation is used
to indicate physical quantities. For example, we use ~R to denote the
city radius measured in units of length and distinguish it from Rwhich
serves to indicate the radius of the triangular lattice measured in
dimensionless lattice units.

We obtain the population density at the census-tract level for
Boston and Atlanta from the 2021 American Census Survey, and for
Toronto from the 2021 Canadian Census of Population. The census
data contains the number of individuals residing in relatively small
geographic regions, i.e., census tracts, used for statistical purposes by
national statistical agencies. Census tracts typically consist of 2500 to
8000 individuals.

The data on the four metro lines and their stations in Boston is
obtained from the Massachusetts Bureau of Geographic Information
(MassGIS) website. Similar data for the four metro lines in Atlanta is
obtained from the Atlanta Regional Commission: Open Data website.
Finally, thedata for the three subway lines and their stations inToronto
is made available by the Toronto Transit Commission at the City of
Toronto Open Data website. The data on the subway lines is available
as shapefiles. The arcs for the rail lines are given by sets of points in the
coordinate reference systems (CRS) applicable to the geographic
location. The CRSs used for Atlanta, Boston, and Toronto are
EPSG:2239, EPSG:26986, and, EPSG:2952, respectively. Similarly, the
location of the stations is given by points in the appropriate CRS. The
Atlanta, Boston, and Toronto subway systems total ~L= 77 km, ~L= 109:6
km, and ~L=69:6 km of rail lines and ~ns =38,~ns = 125, and ~ns = 75 sta-
tions, respectively. The average distance between the stations is 2.07
km, 0.88 km, and 0.94 km for Atlanta, Boston, and Toronto,
respectively.

We choose a city radius ~R such that all stations are contained in
the circle of radius ~R around the center.Wefind the appropriate choice
for this radius to be ~R=25 km in Atlanta and ~R=20 km in Boston and
Toronto. We assume that everything that lies inside this circular area
constitutes the city.

We create a lattice model of the transportation system in a city by
overlaying a triangular lattice of radius R on top of the circle of radius
~R. Please note that we use R = 100 in all figures except for Fig. 5 where
we use R = 25. The operation requires matching locations of the city

that aregivenbypoints in continuous space to lattice sites. To this end,
we fix the location of the city center as the one of the center o of the
triangular lattice. Since the lattice covers the entire circular area of the
city, the physical distance between neighboring sites on the lattice is
~wn,m = ~R=R. The choice of R, for given ~R, determines the granularity of
the lattice mesh overlaid on the city landscape. For instance, R = 100
and ~R =25 km give us neighboring lattice sites n and m at distance
~wn,m =0:25 km, whereas R = 25 and ~R =25 km give ~wn,m = 1 km. Note
that the physical distance between nodes n and m in the two layers is
the same as the physical distance between their replica nodes F(n) and
F(m) in the fast layer, i.e., for all ðFðnÞ,FðmÞÞ 2 F ~wFðnÞ,FðmÞ = ~wn,m. The
distance between the replica nodes n and F(n) is a parameter of the
model ~wn,FðnÞ = ~‘.

The weight ~pn associated with node n in the slow layer is given by
the population density of the associated census tract containing the
site. Note that the size of census tracts varies significantly as the
population density varies. Consequently, depending on the choice ofR
and ~R, wemay have no lattice sites in very small census tracts. We find
that this issue can be resolved by choosing R = 100 for the values of ~R
indicated above.

We assume that the travel speed ~vs on the slow layer is between
5 kmh−1 and 20 kmh−1, and the speed on the fast layer is
~vf =40 km h�1. These are both realistic (ranges of) values for the travel
speedsof cars and subways, respectively. Clearly,wehaveη= ~vs=~vf .We
note that the time required to traverse the edge ðn,mÞ 2 S is
~tn,m = ~wn,m=~vs, whereas the time required to traverse the edge
ðFðnÞ,FðmÞÞ 2 F is ~tFðnÞ,FðmÞ = η~tn,m. For example, if R=25,~R=25 km,
~vs = 20 km h�1, and ~vf =40 km h�1, we have ~tn,m = 1

20 hours or 3min,
and ~wFðnÞ,FðmÞ =

1
40 h or 1.5min. Finally, we assume that a change of

layers occurs also at speed ~vs,meaning that the time required to switch
layers is ~t = ~‘=~vs . In our simulations, we impose ~t =3 mins. This choice
means that 6 mins are required to change mode of transportation,
since the actual cost associated to the use of the fast layer is 2~t.

We denote with ~tn the time required to reach the center o from
node n. This is given by the time corresponding to the fastest path
connecting the two nodes. We finally rewrite Eq. (1) as

~τðF Þ=
P

n2G ~tn ~pnP
n2G ~pn

, ð6Þ

and use this expression while solving the optimization problem of
Eq. (4).

Next, we explain the modeling framework used to obtain the
results for the real subway systems in Fig. 5. The slow layer is modeled
identically as described above. We use ~ns stations as the nodes of the
fast layer. Connections between stations are given by actual railways,
with length learneddirectly from thedata. For each station,we identify
its replica in the slow layer as the node corresponding to the closest (in
terms of geographical distance) site of the triangular lattice.

To properly compare the objective function of Eq. (6) for the real
city against the one obtained after greedy optimization, we set R = 25
when constructing the triangular lattice. This allows us to obtain
comparable numbers of subway stations between the real cities and
the synthetic ones. We respectively have L = 77, 132, and 87 for the
synthetic versions of Atlanta, Boston, and Toronto.

Continuous-space approximation for one-dimensional lattices
To ease analytical calculations, we adopt a continuous-space approx-
imation for a multiplex transportation model where the slow layer is
given by a one-dimensional lattice. Here for simplicity, we assume that
the weight associated to each node n in the slow layer is pn = const. In
the SM, we prove that the symmetry breaking occurs for arbitrary non-
negative functions pn that are symmetric with respect to the center of
the lattice. Under the continuous-space approximation, the slow layer
has the center located in the origin, and is formed of two segments of
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length R extending symmetrically to the left and the right of the center
(see Fig. 2a). The fast layer extends to the right of the origin with a
segment of length αL and to the left with a segment of length (1− α)L,
where 0≤α≤1/2 is a tunable parameter and L≤R is the total length of the
fast layer. The goal of our calculation is to find the value α* corre-
sponding to the optimal configuration of the fast layer, i.e., the solu-
tion of the continuous-space approximation of the optimization
problem of Eq. (4).

Consider first the right side of the fast layer which is serving the
right side of the slow layer. The objective function relative to the right
side of the system is

τrightðαÞ=
R2=2 if 0 ≤ α ≤ rc=L

C + ð1� ηÞ L α2L=2� αR
� �

oth.

(
, ð7Þ

where

C =
1
2
ð1� ηÞr2c +2cðR� rcÞ+

1
2
R2 : ð8Þ

IfαL < rc, the fast layer does not serve anyportionof the slow layer,
thus τrightðαÞ=

R R
0 dx x =R2=2. If αL≥rc, we need to solve the integral

τrightðαÞ=
R rc
0 dx x +

R αL
rc

dx 2c+ηxð Þ+ R R
αL dx 2c� ð1� ηÞαL+ xð Þ,

leading to the secondcaseof Eq. (7).Wenote that the termC appearing
in Eq.(8) does not depend on α, but only on rc and R.

For the left portion of the fast layer, we simply have
τleft(α) = τright(1 − α). For the entire system, the objective function reads
τ(α) = τright(α) + τleft(α).

We now distinguish two cases: (i) rc/L ≤ 1/2 and (ii) rc/L ≥ 1/2. In
case (i), we can write:

τðαÞ=
R2=2 +C + ð1� ηÞ L ð1� αÞ2L=2� ð1� αÞR

h i
if 0≤α ≤ rc=L

2C + ð1� ηÞ L ðð1� αÞ2 +α2ÞL=2� R
h i

if rc=L≤α ≤ 1=2:

8><
>:

ð9Þ
thus,

dτðαÞ
dα

=
ð1� ηÞ L R� ð1� αÞLð Þ≥0 if 0 ≤α ≤ rc=L

ð1� ηÞ L �L� R½ �≤0 if rc=L≤α ≤ 1=2:

�

We see therefore that the function reaches its maximum at α = rc/
L, and displays its minimum value either in α =0 or α = 1/2. To deter-
mine where the minimum of the objective function of Eq. (9) is
obtained, we need to solve the equation τ(α =0) = τ(α = 1/2). After
some simple calculations, we arrive to

ry =R 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
L
R

� �2
s2

4
3
5 : ð10Þ

For rc≥r† the optimal configuration is the one obtained for α* = 1/2,
whereas for rc≤r† the optimal configuration is the one corresponding
to α* = 0.

In case (ii), we can repeat a similar derivation. We find that the
maximum of the objective function is reached in α = 1 − rc/L, and the
function displays itsminimumvalue either in α =0orα = 1/2. Also, here
we find the critical value of Eq. (10) where the optimal configuration of
the fast layer changes from being perfectly symmetric to being
asymmetric. Alternatively, we can determine the critical length L† of
the fast layer as shown in Eq. (2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed during the current study are available at: Census
Reporter, https://censusreporter.org/, Toronto Transit Commission,
https://open.toronto.ca/dataset/ttc-subway-shapefiles/, Atlanta Regio-
nal Commission, https://opendata.atlantaregional.com/datasets/09f0
7db2c25c41db945369f050a87bf5_0/explore, and MassGIS, Boston rail
data, https://www.mass.gov/info-details/massgis-data-trains.

Code availability
The code developed for this paper is available at https://zenodo.org/
records/10659254.
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