Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Endothelial dysfunction: mechanisms and contribution to diseases

Abstract

The endothelium, lining the inner surface of blood vessels and spanning approximately 3 m2, serves as the largest organ in the body. Comprised of endothelial cells, the endothelium interacts with other bodily components including the bloodstream, circulating cells, and the lymphatic system. Functionally, the endothelium primarily synchronizes vascular tone (by balancing vasodilation and vasoconstriction) and prevents vascular inflammation and pathologies. Consequently, endothelial dysfunction disrupts vascular homeostasis, leading to vascular injuries and diseases such as cardiovascular, cerebral, and metabolic diseases. In this opinion/perspective piece, we explore the recently identified mechanisms of endothelial dysfunction across various disease subsets and critically evaluate the strengths and limitations of current therapeutic interventions at the pre-clinical level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LPS-initiated inflammatory signaling in ECs and FABP3 overexpression.
Fig. 2: Endothelial cytoskeleton, vinculin inactivation, and infiltration of immune cells.
Fig. 3: Hyperglycemia and the NO3 theory of endothelial dysfunction.

References

  1. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67.

    Article  CAS  PubMed  Google Scholar 

  2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murad F. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006;355:2003–11.

    Article  CAS  PubMed  Google Scholar 

  4. Chatterjee S. Endothelial mechanotransduction, redox signaling and the regulation of vascular inflammatory pathways. Front Physiol. 2018;9:524.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller SB. Prostaglandins in health and disease: an overview. Semin Arthritis Rheum. 2006;36:37–49

  6. Sharma P, Dong Y, Somers VK, Peterson TE, Zhang Y, Wang S, et al. Intermittent hypoxia regulates vasoactive molecules and alters insulin-signaling in vascular endothelial cells. Sci Rep. 2018;8:14110.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gimbrone MA Jr. Endothelial dysfunction and the pathogenesis of atherosclerosis. In: Gotto AM, Smith LC, Allen B, editors. Atherosclerosis V. Springer; 1980. p. 415–25.

  8. Ross R. The pathogenesis of atherosclerosis—an update. N Engl J Med. 1986;314:488–500.

    Article  CAS  PubMed  Google Scholar 

  9. Chlopicki S, Gryglewski RJ. Angiotensin converting enzyme (ACE) and HydroxyMethylGlutaryl-CoA (HMG-CoA) reductase inhibitors in the forefront of pharmacology of endothelium. Pharmacol Rep. 2005;57:86.

    PubMed  Google Scholar 

  10. Sheinberg DL, McCarthy DJ, Elwardany O, Bryant JP, Luther E, Chen SH, et al. Endothelial dysfunction in cerebral aneurysms. Neurosurg Focus. 2019;47:E3.

    Article  PubMed  Google Scholar 

  11. Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2023;44:695–709.

    Article  CAS  PubMed  Google Scholar 

  12. Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21:319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu H, Diolintzi A, Storch J. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr Opin Clin Nutr Metab Care. 2019;22:407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab. 2020;31:422–37.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen HC, Bu S, Michels D, Nikfarjam S, Rasheed B, Qadura M, et al. The essential role of fatty-acid binding protein 3 in endothelial function. Circulation. 2022;146:A15338.

    Article  Google Scholar 

  16. Zhuang L, Mao Y, Liu Z, Li C, Jin Q, Lu L, et al. FABP3 deficiency exacerbates metabolic derangement in cardiac hypertrophy and heart failure via PPARα pathway. Front Cardiovasc Med. 2021;8:722908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zelencova-Gopejenko D, Videja M, Grandane A, Pudnika-Okinčica L, Sipola A, Vilks K, et al. Heart-type fatty acid binding protein binds long-chain acylcarnitines and protects against lipotoxicity. Int J Mol Sci. 2023;24:5528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2006;86:9–22.

    Article  CAS  PubMed  Google Scholar 

  19. Xu YR, Lei CQ. TAK1-TABs complex: a central signalosome in inflammatory responses. Front Immunol. 2021;11:608976.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9.

    CAS  Google Scholar 

  21. Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Papachristou D, Batistatou A, Sykiotis G, Varakis I, Papavassiliou A. Activation of the JNK–AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone. 2003;32:364–71.

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava M, Baig MS. NOS1 mediates AP1 nuclear translocation and inflammatory response. Biomed Pharmacother. 2018;102:839–47.

    Article  CAS  PubMed  Google Scholar 

  24. Sun L, Deng L, Ea C-K, Xia Z-P, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14:289–301.

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen HC, Bu S, Nikfarjam S, Rasheed B, Michels DC, Singh A, et al. Loss of fatty acid binding protein 3 ameliorates lipopolysaccharide-induced inflammation and endothelial dysfunction. J Biol Chem. 2023;299:102921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang B, Xu J, Ren Q, Cheng L, Guo F, Liang Y, et al. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis. Cell Death Dis. 2022;13:333.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong LY, et al. Adipocyte fatty acid binding protein promotes the onset and progression of liver fibrosis via mediating the crosstalk between liver sinusoidal endothelial cells and hepatic stellate cells. Adv Sci. 2021;8:2003721.

    Article  CAS  Google Scholar 

  28. Hui X, Li H, Zhou Z, Lam KS, Xiao Y, Wu D, et al. Adipocyte fatty acid-binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH2-terminal kinases and activator protein-1. J Biol Chem. 2010;285:10273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shih YT, Wei SY, Chen JH, Wang WL, Wu HY, Wang MC, et al. Vinculin phosphorylation impairs vascular endothelial junctions promoting atherosclerosis. Eur Heart J. 2023;44:304–18.

    Article  CAS  PubMed  Google Scholar 

  30. Izard T, Brown DT. Mechanisms and functions of vinculin interactions with phospholipids at cell adhesion sites. J Biol Chem. 2016;291:2548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol. 2011;90:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van der Stoel MM, Kotini MP, Schoon RM, Affolter M, Belting HG, Huveneers S. Vinculin strengthens the endothelial barrier during vascular development. Vasc Biol. 2023;5:e220012.

    PubMed  PubMed Central  Google Scholar 

  33. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, et al. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol. 2012;196:641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–92.

    Article  CAS  PubMed  Google Scholar 

  35. Evron T, Daigle TL, Caron MG. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci. 2012;33:154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun L, Ye RD. Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin. 2012;33:342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim XR, Harraz OF. Mechanosensing by vascular endothelium. Annu Rev Physiol. 2023;86:71–97.

    Article  PubMed  Google Scholar 

  39. Lin HH, Ng KF, Chen TC, Tseng WY. Ligands and beyond: mechanosensitive adhesion GPCRs. Pharmaceuticals. 2022;15:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, et al. A guide to adhesion GPCR research. FEBS J. 2022;289:7610–30.

    Article  CAS  PubMed  Google Scholar 

  41. Shin J, Hosur KB, Pyaram K, Jotwani R, Liang S, Chavakis T, et al. Expression and function of the homeostatic molecule Del-1 in endothelial cells and the periodontal tissue. Clin Dev Immunol. 2013;2013:617809.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108:787–99.

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Zhong D, Li G. Regulatory role of local tissue signal Del-1 in cancer and inflammation: a review. Cell Mol Biol Lett. 2021;26:1–12.

    Article  Google Scholar 

  44. Fingleton B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim Biophys Acta Mol Cell Res. 2017;1864:2036–42.

    Article  CAS  PubMed  Google Scholar 

  45. Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41.

  46. De Jager SC, Hoefer IE. Beyond the matrix: MMP2 as critical regulator of inflammation-mediated vascular dysfunction. Cardiovasc Res. 2017;113:1705–7.

    Article  PubMed  Google Scholar 

  47. Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, et al. Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 2022;132:e126155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brooks PC, Strömblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996;85:683–93.

    Article  CAS  PubMed  Google Scholar 

  49. Cirulli V, Beattie GM, Klier G, Ellisman M, Ricordi C, Quaranta V, et al. Expression and function of αvβ3 and αvβ5 integrins in the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells. J Cell Biol. 2000;150:1445–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 2019;20:3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tanaka J, Qiang L, Banks AS, Welch CL, Matsumoto M, Kitamura T, et al. Foxo1 links hyperglycemia to LDL oxidation and endothelial nitric oxide synthase dysfunction in vascular endothelial cells. Diabetes. 2009;58:2344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dharaneeswaran H, Abid MR, Yuan L, Dupuis D, Beeler D, Spokes KC, et al. FOXO1-mediated activation of Akt plays a critical role in vascular homeostasis. Circ Res. 2014;115:238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xin Z, Ma Z, Jiang S, Wang D, Fan C, Di S, et al. FOXOs in the impaired heart: new therapeutic targets for cardiac diseases. Biochim Biophys Acta Mol Basis Dis. 2017;1863:486–98.

    Article  CAS  PubMed  Google Scholar 

  54. Agrahari AK, Dikshit M, Asthana S. Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J. 2022;20:3734–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita KI, Takeda K, et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001;2:222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heslop K, Rovini A, Hunt E, Fang D, Morris M, Christie C, et al. JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. Biochem Pharmacol. 2020;171:113728.

    Article  CAS  PubMed  Google Scholar 

  57. Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–71.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288:26464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang H, Zhou Y, Nabavi SM, Sahebkar A, Little PJ, Xu S, et al. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front Cardiovasc Med. 2022;9:925923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1–12.

    Article  CAS  PubMed  Google Scholar 

  61. Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS uncoupling and the nitric oxide metabolic pathway in the pathogenesis of autoimmune rheumatic diseases. Oxid Med Cell Longev. 2020;2020:1417981.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang YM, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol. 2009;297:H1829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023;24:9352.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ponugoti B, Dong G, Graves DT. Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res. 2012;2012:939751.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Park J, Hwang I, Kim SJ, Youn SW, Hur J, Kim HS. Atorvastatin prevents endothelial dysfunction in high glucose condition through Skp2-mediated degradation of FOXO1 and ICAM-1. Biochem Biophys Res Commun. 2018;495:2050–7.

    Article  CAS  PubMed  Google Scholar 

  66. Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH, et al. Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell. 2012;46:351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang H, Tindall DJ. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim Biophys Acta Mol Cell Res. 2011;1813:1961–4.

    Article  CAS  Google Scholar 

  68. Yu X, Wang R, Zhang Y, Zhou L, Wang W, Liu H, et al. Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene. 2019;38:7457–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82130011, 92249301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajoolabady, A., Pratico, D. & Ren, J. Endothelial dysfunction: mechanisms and contribution to diseases. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01295-8

Keywords

Search

Quick links