Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPC3-targeted CAR-T cells expressing GLUT1 or AGK exhibit enhanced antitumor activity against hepatocellular carcinoma

Abstract

Chimeric antigen receptor-expressing T (CAR-T) cells induce robust antitumor responses in patients with hematologic malignancies. However, CAR-T cells exhibit only limited efficacy against solid tumors such as hepatocellular carcinoma (HCC), partially due to their limited expansion and persistence. CD8+ T cells, as key components of the adaptive immune response, play a central role in antitumor immunity. Aerobic glycolysis is the main metabolic feature of activated CD8+ T cells. In the tumor microenvironment, however, the uptake of large amounts of glucose by tumor cells and other immunosuppressive cells can impair the activation of T cells. Only when tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment have a glycolytic advantage might the effector function of T cells be activated. Glucose transporter type 1 (GLUT1) and acylglycerol kinase (AGK) can boost glycolytic metabolism and activate the effector function of CD8T cells, respectively. In this study, we generated GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK for the treatment of HCC. GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK specifically and effectively lysed GPC3-positive tumor cells in vitro in an antigen-dependent manner. Furthermore, GLUT1 or AGK overexpression protected CAR-T cells from apoptosis during repeated exposures to tumor cells. Compared with second-generation CAR-T cells, GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK exhibited greater CD8+ T-cell persistence in vivo and better antitumor effects in HCC allograft mouse models. Finally, we revealed that GLUT1 or AGK maintained anti-apoptosis ability in CD8+ T cells via activation of the PI3K/Akt pathway. This finding might identify a therapeutic strategy for advanced HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased glycolysis improves CD8+ T cell function.
Fig. 2: Generation of GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK.
Fig. 3: Immune function of GLUT1 and AGK CAR-T cells.
Fig. 4: Reduced apoptosis in CD8+ T cells expressing the GLUT1 or AGK CAR.
Fig. 5: GLUT1- or AGK-overexpressing CAR-T cells displayed superior antitumor efficacy in vivo.
Fig. 6: Accumulation of CD8+ T cells after effective dual-targeted CAR-T cell therapy in vivo.
Fig. 7: GLUT1 and AGK maintain apoptosis resistance in CD8+ T cells via the PI3K/Akt pathway.

Similar content being viewed by others

Data availability

The human sequence data generated in this study are not publicly available due to privacy requirements but are available upon reasonable request from the corresponding author. Other data generated in this study are available within the article and its supplementary data files.

References

  1. Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin Cancer Res. 2020;26:3979–89.

    Article  CAS  PubMed  Google Scholar 

  2. Singh N, Orlando E, Xu J, Xu J, Binder Z, Collins MA, et al. Mechanisms of resistance to CAR T cell therapies. Semin Cancer Biol. 2020;65:91–8.

    Article  CAS  PubMed  Google Scholar 

  3. Li D, Li N, Zhang YF, Fu H, Feng M, Schneider D, et al. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology. 2020;158:2250–65.e2220.

    Article  CAS  PubMed  Google Scholar 

  4. Ruixin S, Yansha S, Chuanlong W, Yifan L, Min Z, Yiwei D, et al. Expressing CXCR4 in CAR-T cells suppresses MDSCs recruitment via STAT3/NF-kappaB/SDF-1alpha axis to enhance anti-tumor efficacy against pancreatic cancer. Mol Ther. 2023;31:3193–209.

  5. Filmus J, Capurro M. Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J. 2013;280:2471–6.

    Article  CAS  PubMed  Google Scholar 

  6. Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res. 2014;20:6418–28.

    Article  CAS  PubMed  Google Scholar 

  7. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33:1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruixin S, Yifan L, Chuanlong W, Min Z, Hong L, Guoxiu D, et al. Expressing IL-15/IL-18 and CXCR2 improve infiltration and survival of EGFRvIII-targeting CAR-T cells in breast cancer. Biochem Pharmacol. 2023;212:115536.

    Article  PubMed  Google Scholar 

  10. Luo H, Su J, Sun R, Sun Y, Wang Y, Dong Y, et al. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clin Cancer Res. 2020;26:5494–505.

    Article  CAS  PubMed  Google Scholar 

  11. Mishra D, Banerjee D. Metabolic interactions between tumor and stromal cells in the tumor microenvironment. Adv Exp Med Biol. 2021;1350:101–21.

    Article  CAS  PubMed  Google Scholar 

  12. Ou X, Lv W. Metabolic changes and interaction of tumor cell, myeloid-derived suppressor cell and T cell in hypoxic microenvironment. Fut Oncol. 2020;16:383–93.

    Article  CAS  Google Scholar 

  13. Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 2017;117:1518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiu J, Villa M, Sanin DE, Buck MD, O’Sullivan D, Ching R, et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 2019;27:2063–74.e2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 2018;27:977–87 e974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin R, Hao J, Yu J, Wang P, Sauter ER, Li B. Role of FABP5 in T cell lipid metabolism and function in the tumor microenvironment. Cancers (Basel). 2023;15:657.

  19. Singh L, Nair L, Kumar D, Arora MK, Bajaj S, Gadewar M, et al. Hypoxia induced lactate acidosis modulates tumor microenvironment and lipid reprogramming to sustain the cancer cell survival. Front Oncol. 2023;13:1034205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Zhao A, Li M, Shi L, Han Q, Hou Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front Immunol. 2022;13:1046755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Sullivan D, Pearce EL. Targeting T cell metabolism for therapy. Trends Immunol. 2015;36:71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Palacio-Castaneda V, Kooijman L, Venzac B, Verdurmen WPR, Le Gac S. Metabolic switching of tumor cells under hypoxic conditions in a tumor-on-a-chip model. Micromachines (Basel). 2020;11:382.

  23. Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021;593:282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  25. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  26. Ge W, Tan SJ, Wang SH, Li L, Sun XF, Shen W, et al. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics. 2020;10:7581–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Zhang H, Du G, Luo H, Su J, Sun Y, et al. Enforced expression of Runx3 improved CAR-T cell potency in solid tumor via enhancing resistance to activation-induced cell death. Mol Ther. 2023;31:701–14.

    Article  CAS  PubMed  Google Scholar 

  29. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591:645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Y, Dong Y, Sun R, Liu Y, Wang Y, Luo H, et al. Chimeric anti-GPC3 sFv-CD3epsilon receptor-modified T cells with IL7 co-expression for the treatment of solid tumors,. Mol Ther Oncolytics. 2022;25:160–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu Z, Qu G, Yu X, Jiang H, Teng XL, Ding L, et al. Acylglycerol kinase maintains metabolic state and immune responses of CD8+ T cells. Cell Metab. 2019;30:290–302.e295.

    Article  CAS  PubMed  Google Scholar 

  32. Commander R, Wei C, Sharma A, Mouw JK, Burton LJ, Summerbell E, et al. Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun. 2020;11:1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tao J, McCourt C, Sultana H, Nelson C, Driver J, Hackmann TJ. Use of a fluorescent analog of glucose (2-NBDG) to identify uncultured rumen bacteria that take up glucose. Appl Environ Microbiol. 2019;85:e03018–18.

  34. Manaharan T, Ming CH, Palanisamy UD. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem. 2013;136:354–63.

    Article  CAS  PubMed  Google Scholar 

  35. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods. 2005;64:207–15.

    Article  CAS  PubMed  Google Scholar 

  36. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adachi K, Tamada K. Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy. Cancer Sci. 2015;106:945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40:201–18.e209.

    Article  CAS  PubMed  Google Scholar 

  39. Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 2018;28:87–103 e106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong H, Xu G, Chen J, Zhang J, Chen C, Wu C, et al. LncRNA RMRP contributes to the development and progression of spinal cord injury by regulating miR-766-5p/FAM83A axis. Mol Neurobiol. 2022;59:6200–10.

    Article  CAS  PubMed  Google Scholar 

  41. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31:311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kugelberg E. Innate lymphoid cells: nutrients direct immune balance. Nat Rev Immunol. 2014;14:137.

    Article  CAS  PubMed  Google Scholar 

  43. Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol. 2016;17:364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  45. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ancey PB, Contat C, Meylan E. Glucose transporters in cancer—from tumor cells to the tumor microenvironment. FEBS J. 2018;285:2926–43.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.

    Article  CAS  PubMed  Google Scholar 

  48. Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism. Eur J Immunol. 2017;47:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao LX, Liu J, Xu L. MiR-610 functions as a tumor suppressor in oral squamous cell carcinoma by directly targeting AGK. Eur Rev Med Pharmacol Sci. 2019;23:187–97.

    PubMed  Google Scholar 

  50. Zhou P, Chi H. AGK unleashes CD8(+) T cell glycolysis to combat tumor growth. Cell Metab. 2019;30:233–4.

    Article  CAS  PubMed  Google Scholar 

  51. Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic regulation of apoptosis in cancer. Int Rev Cell Mol Biol. 2016;327:43–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kilic M, Kasperczyk H, Fulda S, Debatin KM. Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene. 2007;26:2027–38.

    Article  CAS  PubMed  Google Scholar 

  53. Li C, Zhang G, Zhao L, Ma Z, Chen H. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol. 2016;14:15.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mason EF, Zhao Y, Goraksha-Hicks P, Coloff JL, Gannon H, Jones SN, et al. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl. Cancer Res. 2010;70:8066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 2021;10:1056.

  56. DeFrancesco L. CAR-T cell therapy seeks strategies to harness cytokine storm. Nat Biotechnol. 2014;32:604.

    Article  PubMed  Google Scholar 

  57. Chmielewski M, Abken H. CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother. 2012;61:1269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20:3025–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lanitis E, Rota G, Kosti P, Ronet C, Spill A, Seijo B, et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med. 2021;218:e20192203.

  60. Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12:558–80.

    Article  CAS  PubMed  Google Scholar 

  61. van Bruggen JAC, Martens AWJ, Fraietta JA, Hofland T, Tonino SH, Eldering E, et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood. 2019;134:44–58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding

This study was supported by the National Natural Science Foundation of China (ID 82073358 to Hua Jiang, ID 82073359 to Zonghai Li, 82272920 to Min Zhou), the Shanghai Municipal Health and Health Commission (ID 20234Y0193 to Sun Ruixin), the Shanghai Oriental Talent Youth Project (to Sun Ruixin), the Shanghai “Rising Stars of Medical Talents” Youth Development Program-Clinical Laboratory Practitioner Program (ID 2023-JY to Sun Ruixin) and the “Gan Quan Xin Xing” talent training program of Shanghai Tongji Hospital (HRBC 2307).

Author information

Authors and Affiliations

Authors

Contributions

SRX, JH, and LZH designed the study. RXS, LYF, SYS, WY, and SBZ performed the experiments and analyzed the data. SRX and LYF performed the animal experiments. SRX wrote the paper. JH and LZH reviewed and edited the manuscript. SRX, JH, ZM, and LZH supervised the project.

Corresponding authors

Correspondence to Hua Jiang or Zong-hai Li.

Ethics declarations

Competing interests

Dr. Zonghai Li has ownership interests in CAR-T cells related to this work. The remaining authors declare no competing interests.

Ethics approval and consent to participate

The Ethics Committee of Renji Hospital, Shanghai Jiaotong University School of Medicine (RJ2022-1115) approved this study. All animal experiments were performed according to protocols approved by the Shanghai Cancer Institute Experimental Animal Care Commission.

Additional information

Consent for publication Not applicable.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Rx., Liu, Yf., Sun, Ys. et al. GPC3-targeted CAR-T cells expressing GLUT1 or AGK exhibit enhanced antitumor activity against hepatocellular carcinoma. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01287-8

Keywords

Search

Quick links