Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A potent new-scaffold androgen receptor antagonist discovered on the basis of a MIEC-SVM model

Abstract

Prostate cancer (PCa) is the second most prevalent malignancy among men worldwide. The aberrant activation of androgen receptor (AR) signaling has been recognized as a crucial oncogenic driver for PCa and AR antagonists are widely used in PCa therapy. To develop novel AR antagonist, a machine-learning MIEC-SVM model was established for the virtual screening and 51 candidates were selected and submitted for bioactivity evaluation. To our surprise, a new-scaffold AR antagonist C2 with comparable bioactivity with Enz was identified at the initial round of screening. C2 showed pronounced inhibition on the transcriptional function (IC50 = 0.63 μM) and nuclear translocation of AR and significant antiproliferative and antimetastatic activity on PCa cell line of LNCaP. In addition, C2 exhibited a stronger ability to block the cell cycle of LNCaP than Enz at lower dose and superior AR specificity. Our study highlights the success of MIEC-SVM in discovering AR antagonists, and compound C2 presents a promising new scaffold for the development of AR-targeted therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3: Performance of the best-performed MIEC model.
Fig. 4: Predicted binding mechanism.
Fig. 5: The effects of C2 on AR signaling.
Fig. 6: C2 attenuated the cell cycle progression of LNCaP cells.
Fig. 7: The cytotoxicity of C2 on PCa cell lines.
Fig. 8: C2 inhibited the migration of LNCaP cells.
Fig. 9: Selectivity of C2 to nuclear receptors MR, GR and PR.

Similar content being viewed by others

References

  1. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  3. Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Prim. 2021;7:9.

    Article  PubMed  Google Scholar 

  4. Li D, Zhou WF, Pang JP, Tang Q, Zhong BL, Shen C, et al. A magic drug target: androgen receptor. Med Res Rev. 2019;39:1485–514.

    Article  CAS  PubMed  Google Scholar 

  5. Lv S, Song Q, Chen G, Cheng E, Chen W, Cole R, et al. Regulation and targeting of androgen receptor nuclear localization in castration-resistant prostate cancer. J Clin Invest. 2021;131:e141335.

  6. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.

    Article  PubMed  Google Scholar 

  7. Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu S, et al. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene. 2022;41:387–99.

    Article  CAS  PubMed  Google Scholar 

  8. Chai X, Sun H, Zhou W, Chen C, Shan L, Yang Y, et al. Discovery of N-(4-(Benzyloxy)-phenyl)-sulfonamide derivatives as novel antagonists of the human androgen receptor targeting the activation function 2. J Med Chem. 2022;65:2507–21.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou W, Duan M, Fu W, Pang J, Tang Q, Sun H, et al. Discovery of novel androgen receptor ligands by structure-based virtual screening and bioassays. Genom Proteom Bioinform. 2018;16:416–27.

    Article  CAS  Google Scholar 

  10. Munuganti RS, Hassona MD, Leblanc E, Frewin K, Singh K, Ma D, et al. Identification of a potent antiandrogen that targets the BF3 site of the androgen receptor and inhibits enzalutamide-resistant prostate cancer. Chem Biol. 2014;21:1476–85.

    Article  CAS  PubMed  Google Scholar 

  11. Fu W, Yang H, Hu C, Liao J, Gong Z, Zhang M, et al. Small-molecule inhibition of androgen receptor dimerization as a strategy against prostate cancer. ACS Cent Sci. 2023;9:675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh SM, Gauthier S, Labrie F. Androgen receptor antagonists (antiandrogens): structure-activity relationships. Curr Med Chem. 2000;7:211–47.

    Article  CAS  PubMed  Google Scholar 

  13. Kim W, Ryan CJ. Androgen receptor directed therapies in castration-resistant metastatic prostate cancer. Curr Treat Options Oncol. 2012;13:189–200.

    Article  PubMed  Google Scholar 

  14. Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E, Wohlfahrt G, et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep. 2015;5:12007.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bambury RM, Scher HI. Enzalutamide: development from bench to bedside. Urol Oncol. 2015;33:280–8.

    Article  CAS  PubMed  Google Scholar 

  16. Song CH, Yang SH, Park E, Cho SH, Gong EY, Khadka DB, et al. Structure-based virtual screening and identification of a novel androgen receptor antagonist. J Biol Chem. 2012;287:30769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang Q, Fu W, Zhang M, Wang E, Shan L, Chai X, et al. Novel androgen receptor antagonist identified by structure-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem. 2020;192:112156.

    Article  CAS  PubMed  Google Scholar 

  18. Fu W, Zhang M, Liao J, Tang Q, Lei Y, Gong Z, et al. Discovery of a novel androgen receptor antagonist manifesting evidence to disrupt the dimerization of the ligand-binding domain via attenuating the hydrogen-bonding network between the two monomers. J Med Chem. 2021;64:17221–38.

    Article  CAS  PubMed  Google Scholar 

  19. Hard R, Li N, He W, Ross B, Mo GCH, Peng Q, et al. Deciphering and engineering chromodomain-methyllysine peptide recognition. Sci Adv. 2018;4:eaau1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou T, Zhang W, Case DA, Wang W. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J Mol Biol. 2008;376:1201–14.

    Article  CAS  PubMed  Google Scholar 

  21. Hou T, Xu Z, Zhang W, McLaughlin WA, Case DA, Xu Y, et al. Characterization of domain-peptide interaction interface: a generic structure-based model to decipher the binding specificity of SH3 domains. Mol Cell Proteom. 2009;8:639–49.

    Article  CAS  Google Scholar 

  22. Hou TJ, Li N, Li YY, Wang W. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J Proteome Res. 2012;11:2982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun H, Pan P, Tian S, Xu L, Kong X, Li Y, et al. Constructing and validating high-performance MIEC-SVM models in virtual screening for kinases: a better way for actives discovery. Sci Rep. 2016;6:24817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Wang Z, Tian S, Wang L, Tang R, Yu Y, et al. Determination of molecule category of ligands targeting the ligand-binding pocket of nuclear receptors with structural elucidation and machine learning. J Chem Inf Model 2022;62:3993–4007.

    Article  CAS  PubMed  Google Scholar 

  25. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci USA. 2005;102:6201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;35:D198–D201.

    Article  CAS  PubMed  Google Scholar 

  27. Schrödinger, version 9.0, Schrödinger, LLC, New York, NY, 2009. http://www.schrodinger.com.

  28. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem. 2006;49:6177–96.

    Article  CAS  PubMed  Google Scholar 

  29. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750–9.

    Article  CAS  PubMed  Google Scholar 

  30. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem. 2000;21:1049–74.

    Article  CAS  Google Scholar 

  32. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.

    Article  CAS  PubMed  Google Scholar 

  33. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23:1623–41.

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Sun H, Li Y, Wang J, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B. 2013;117:8408–21.

    Article  CAS  PubMed  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  CAS  Google Scholar 

  36. Darden T, York D, Pedersen L. Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.

    Article  CAS  Google Scholar 

  37. Tang R, Chen P, Wang Z, Wang L, Hao H, Hou T, et al. Characterizing the stabilization effects of stabilizers in protein–protein systems with end-point binding free energy calculations. Brief Bioinform. 2022;23:bbac127.

    Article  PubMed  Google Scholar 

  38. Yu Y, Wang Z, Wang L, Tian S, Hou T, Sun H. Predicting the mutation effects of protein-ligand interactions via end-point binding free energy calculations: strategies and analyses. J Cheminform. 2022;14:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinform. 2004;55:383–94.

    Article  CAS  Google Scholar 

  40. Gohlke H, Kiel C, Case DA. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003;330:891–914.

    Article  CAS  PubMed  Google Scholar 

  41. Miller III BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. J Chem Theory Comput. Vol. 8, 3314–21 (2012).

  42. Vapnik V. The nature of statistical learning theory (Springer Science & Business Media, 2013).

  43. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

    Article  Google Scholar 

  44. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2001;2:1–27.

    Article  Google Scholar 

  45. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324:787–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014;33:413–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China (LD22H300001, 2023C03110) and the National Natural Science Foundation of China (U21A20301).

Author information

Authors and Affiliations

Authors

Contributions

DL, TJH, and HYS initiated and supervised the research. XYW, XC, and HYS conducted virtual screening, compound validations and biological assays. LHS, XHX, and LX performed part of in vitro experiments and interpreted part of the data. XYW, XC, HYS, and DL wrote the manuscript, and other authors contributed specific parts of the manuscript. HYS and DL assume responsibility for the manuscript in its entirety. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Hui-yong Sun or Dan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xy., Chai, X., Shan, Lh. et al. A potent new-scaffold androgen receptor antagonist discovered on the basis of a MIEC-SVM model. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01284-x

Keywords

Search

Quick links