Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Genetic evidence for the “dopamine hypothesis of bipolar disorder”

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular characterization of rs4245147 and rs4936272.

References

  1. Haggarty SJ, Karmacharya R, Perlis RH. Advances toward precision medicine for bipolar disorder: mechanisms & molecules. Mol Psychiatry. 2021;26:168–85.

    Article  Google Scholar 

  2. Zhang C, Xiao X, Li T, Li M. Translational genomics and beyond in bipolar disorder. Mol Psychiatry. 2021;26:186–202.

    Article  Google Scholar 

  3. Li M, Li T, Xiao X, Chen J, Hu Z, Fang Y. Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry. 2022;27:2927–39.

    Article  Google Scholar 

  4. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017;22:666–79.

    Article  CAS  Google Scholar 

  5. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  Google Scholar 

  6. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  CAS  Google Scholar 

  7. Gurdasani D, Barroso I, Zeggini E, Sandhu MS. Genomics of disease risk in globally diverse populations. Nat Rev Genet. 2019;20:520–35.

    Article  CAS  Google Scholar 

  8. Li HJ, Zhang C, Hui L, Zhou DS, Li Y, Zhang CY, et al. Novel risk loci associated with genetic risk for bipolar disorder among Han Chinese individuals: a genome-wide association study and meta-analysis. JAMA Psychiatry. 2021;78:320–30.

    Article  Google Scholar 

  9. Kichaev G, Pasaniuc B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am J Hum Genet. 2015;97:260–71.

    Article  CAS  Google Scholar 

  10. Li YR, Keating BJ. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 2014;6:91.

    Article  Google Scholar 

  11. Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature. 2018;562:210–6.

    Article  CAS  Google Scholar 

  12. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362:eaat8464.

    Article  CAS  Google Scholar 

  13. Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardinas AF, et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat Genet. 2019;51:659–74.

    Article  CAS  Google Scholar 

  14. Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E, et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat Neurosci. 2017;20:1418–26.

    Article  CAS  Google Scholar 

  15. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    Article  CAS  Google Scholar 

  16. Robins C, Liu Y, Fan W, Duong DM, Meigs J, Harerimana NV, et al. Genetic control of the human brain proteome. Am J Hum Genet. 2021;108:400–10.

    Article  CAS  Google Scholar 

  17. Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J, Steer J, et al. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat Genet. 2021;53:304–12.

    Article  CAS  Google Scholar 

  18. Bryois J, Calini D, Macnair W, Foo L, Urich E, Ortmann W, et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat Neurosci. 2022;25:1104–12.

    Article  CAS  Google Scholar 

  19. Aygun N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, et al. Brain-trait-associated variants impact cell-type-specific gene regulation during neurogenesis. Am J Hum Genet. 2021;108:1647–68.

    Article  CAS  Google Scholar 

  20. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  Google Scholar 

  21. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–4.

    Article  CAS  Google Scholar 

  22. Pearlson GD, Wong DF, Tune LE, Ross CA, Chase GA, Links JM, et al. In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry. 1995;52:471–7.

    Article  CAS  Google Scholar 

  23. Kaalund SS, Newburn EN, Ye T, Tao R, Li C, Deep-Soboslay A, et al. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol Psychiatry. 2014;19:1258–66.

    Article  CAS  Google Scholar 

  24. Jauhar S, Nour MM, Veronese M, Rogdaki M, Bonoldi I, Azis M, et al. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry. 2017;74:1206–13.

    Article  Google Scholar 

  25. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379:606–12.

    Article  CAS  Google Scholar 

  26. Gainetdinov RR, Jones SR, Caron MG. Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry. 1999;46:303–11.

    Article  CAS  Google Scholar 

  27. Bhana N, Perry CM. Olanzapine: a review of its use in the treatment of bipolar I disorder. CNS Drugs. 2001;15:871–904.

    Article  CAS  Google Scholar 

  28. Li T, Liu X, Sham PC, Aitchison KJ, Cai G, Arranz MJ, et al. Association analysis between dopamine receptor genes and bipolar affective disorder. Psychiatry Res. 1999;86:193–201.

    Article  CAS  Google Scholar 

  29. Kirov G, Jones I, McCandless F, Craddock N, Owen MJ. Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. Mol Psychiatry. 1999;4:558–65.

    Article  CAS  Google Scholar 

  30. Zou YF, Wang F, Feng XL, Li WF, Tian YH, Tao JH, et al. Association of DRD2 gene polymorphisms with mood disorders: a meta-analysis. J Affect Disord. 2012;136:229–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Yunnan Fundamental Research Projects (202101AW070020 to XX, 202101AT070359 to LW); Natural Science Funds for Distinguished Young Scholar of Zhejiang (LR20H090001 to CW); Municipal Key R&D Program of Ningbo (2022Z127 to CW); Nature Science Foundation of China Key Project (81920108018 to TL); Key R&D Program of Zhejiang (2022C03096 to TL); Special Foundation for Brain Research from Science and Technology Program of Guangdong (2018B030334001 to TL); Project for Hangzhou Medical Disciplines of Excellence and Key Project for Hangzhou Medical Disciplines (202004A11 to TL); National Key Research and Development Program of China (2018YFC1314600 to ZL); and Open Research Fund (AMHD-2021-1 and AMHD-2022-1).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

XX, CW, TL, ML and CYZ conceived and designed the study. CYZ and ML performed most analyses. XC conducted dual luciferase assays. LG, CW, TL and ZL contributed to sample collections. GeseDNA Research Team helped sample collections. LW and ML contributed to sample organization, DNA extraction and genotyping assays. XJL helped all aspects of study designs and results interpretation. XX, ML and CYZ drafted the first version of the manuscript. All authors revised the manuscript critically and approved the final version.

Corresponding authors

Correspondence to Chuang Wang, Tao Li or Xiao Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CY., Cai, X., Guo, L. et al. Genetic evidence for the “dopamine hypothesis of bipolar disorder”. Mol Psychiatry 28, 532–535 (2023). https://doi.org/10.1038/s41380-022-01808-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01808-z

This article is cited by

Search

Quick links