Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LYMPHOMA

Clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma

Abstract

The clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma (ND-DLBCL) remains largely unexplored. One hundred ND-DLBCL patients were consecutively enrolled as training cohort and another 26 ND-DLBCL patients were prospectively enrolled in validation cohort. CSF-ctDNA positivity (CSF(+)) was identified in 25 patients (25.0%) in the training cohort and 7 patients (26.9%) in the validation cohort, extremely higher than CNS involvement rate detected by conventional methods. Patients with mutations of CARD11, JAK2, ID3, and PLCG2 were more predominant with CSF(+) while FAT4 mutations were negatively correlated with CSF(+). The downregulation of PI3K-AKT signaling, focal adhesion, actin cytoskeleton, and tight junction pathways were enriched in CSF(+) ND-DLBCL. Furthermore, pretreatment CSF(+) was significantly associated with poor outcomes. Three risk factors, including high CSF protein level, high plasma ctDNA burden, and involvement of high-risk sites were used to predict the risk of CSF(+) in ND-DLBCL. The sensitivity and specificity of pretreatment CSF-ctDNA to predict CNS relapse were 100% and 77.3%. Taken together, we firstly present the prevalence and the genomic and transcriptomic landscape for CSF-ctDNA(+) DLBCL and highlight the importance of CSF-ctDNA as a noninvasive biomarker in detecting and monitoring of CSF infiltration and predicting CNS relapse in DLBCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinicopathological features of pretreatment CSF-ctDNA in newly diagnosed DLBCL.
Fig. 2: Differences of genomic landscapes between CSF(+) ND-DLBCL and PCNSL.
Fig. 3: The establishment of CSFi-IPI for CSFi prediction in ND-DLBCL patients.
Fig. 4: Predominant gene alterations in CSF(+) DLBCL patients.
Fig. 5: Transcriptomic alterations between CSF(+) and CSF(−) DLBCL patients.
Fig. 6: Molecular responses in CSF-ctDNA during therapy.

Similar content being viewed by others

Data availability

We agree to share publication-related data. The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human. Part of DNA sequencing data has been shared in a data supplement available with the online version of this article.

References

  1. Eyre TA, Savage KJ, Cheah CY, El-Galaly TC, Lewis KL, McKay P, et al. CNS prophylaxis for diffuse large B-cell lymphoma. Lancet Oncol. 2022;23:e416–e426.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson MR, Eyre TA, Kirkwood AA, Wong Doo N, Soussain C, Choquet S, et al. Timing of high-dose methotrexate CNS prophylaxis in DLBCL: a multicenter international analysis of 1384 patients. Blood. 2022;139:2499–511.

    Article  CAS  PubMed  Google Scholar 

  3. El-Galaly TC, Cheah CY, Bendtsen MD, Nowakowski GS, Kansara R, Savage KJ, et al. Treatment strategies, outcomes and prognostic factors in 291 patients with secondary CNS involvement by diffuse large B-cell lymphoma. Eur J Cancer. 2018;93:57–68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haioun C, Besson C, Lepage E, Thieblemont C, Simon D, Rose C. et al.Incidence and risk factors of central nervous system relapse in histologically aggressive non-Hodgkin’s lymphoma uniformly treated and receiving intrathecal central nervous system prophylaxis: a GELA study on 974 patients Groupe d’Etudes des Lymphomes de l’Adulte.Ann Oncol. 2000;11:685–90.

    Article  CAS  PubMed  Google Scholar 

  5. Bjorkholm M, Hagberg H, Holte H, Kvaloy S, Teerenhovi L, Anderson H, et al. Central nervous system occurrence in elderly patients with aggressive lymphoma and a long-term follow-up. Ann Oncol. 2007;18:1085–9.

    Article  CAS  PubMed  Google Scholar 

  6. Boehme V, Zeynalova S, Kloess M, Loeffler M, Kaiser U, Pfreundschuh M, et al. Incidence and risk factors of central nervous system recurrence in aggressive lymphoma-a survey of 1693 patients treated in protocols of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann Oncol. 2007;18:149–57.

    Article  CAS  PubMed  Google Scholar 

  7. Mutter JA, Alig SK, Esfahani MS, Lauer EM, Mitschke J, Kurtz DM, et al. Circulating tumor DNA profiling for detection, risk stratification, and classification of brain lymphomas. J Clin Oncol. 2023;41:1684–94.

    Article  CAS  PubMed  Google Scholar 

  8. Foerster AK, Lauer EM, Scherer F. Clinical applications of circulating tumor DNA in central nervous system lymphoma. Semin Hematol. 2023;60:150–6.

    Article  PubMed  Google Scholar 

  9. Seoane J, De Mattos-Arruda L, Le Rhun E, Bardelli A, Weller M. Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Ann Oncol. 2019;30:211–8.

    Article  CAS  PubMed  Google Scholar 

  10. Alderuccio JP, Nayak L, Cwynarski K. How I treat secondary CNS involvement by aggressive lymphomas. Blood. 2023;142:1771–83.

  11. Wang X, Gao Y, Shan C, Lai M, He H, Bai B, et al. Association of circulating tumor DNA from the cerebrospinal fluid with high-risk CNS involvement in patients with diffuse large B-cell lymphoma. Clin Transl Med. 2021;11:e236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37:551–68 e514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu B, Guo W, Zhang F, Lv F, Ji Y, Peng Y, et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun. 2021;12:6770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li N, Wang BX, Li J, Shao Y, Li MT, Li JJ, et al. Perioperative circulating tumor DNA as a potential prognostic marker for operable stage I to IIIA non-small cell lung cancer. Cancer. 2022;128:708–18.

    Article  CAS  PubMed  Google Scholar 

  15. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171:481–94 e415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmitz N, Zeynalova S, Nickelsen M, Kansara R, Villa D, Sehn LH, et al. CNS international prognostic index: a risk model for CNS relapse in patients with diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol. 2016;34:3150–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ollila TA, Kurt H, Waroich J, Vatkevich J, Sturtevant A, Patel NR, et al. Genomic subtypes may predict the risk of central nervous system recurrence in diffuse large B-cell lymphoma. Blood. 2021;137:1120–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baraniskin A, Schroers R. Liquid biopsy and other non-invasive diagnostic measures in PCNSL. Cancers. 2021;13:2665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoon SE, Kim YJ, Shim JH, Park D, Cho J, Ko YH, et al. Plasma circulating tumor DNA in patients with primary central nervous system lymphoma. Cancer Res Treat. 2022;54:597–612.

    Article  CAS  PubMed  Google Scholar 

  20. Szadkowska P, Roura AJ, Wojtas B, Wojnicki K, Licholai S, Waller T, et al. Improvements in quality control and library preparation for targeted sequencing allowed detection of potentially pathogenic alterations in circulating cell-free DNA derived from plasma of brain tumor patients. Cancers. 2022;14:3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565:654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng L, Duan W, Guan J, Wang K, Liu Z, Wang X, et al. Detection of glioma-related hotspot mutations through sequencing of cerebrospinal fluid (CSF)-derived circulating tumor DNA: a pilot study on CSF-based liquid biopsy for primary spinal cord astrocytoma. Neurospine. 2023;20:701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holdhoff M, Ambady P, Abdelaziz A, Sarai G, Bonekamp D, Blakeley J, et al. High-dose methotrexate with or without rituximab in newly diagnosed primary CNS lymphoma. Neurology. 2014;83:235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shah GD, Yahalom J, Correa DD, Lai RK, Raizer JJ, Schiff D, et al. Combined immunochemotherapy with reduced whole-brain radiotherapy for newly diagnosed primary CNS lymphoma. J Clin Oncol. 2007;25:4730–5.

    Article  CAS  PubMed  Google Scholar 

  25. Grommes C, DeAngelis LM. Primary CNS Lymphoma. J Clin Oncol. 2017;35:2410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh PK, Pan E. Review of rituximab in primary CNS lymphoma. J Neurol Sci. 2020;410:116649.

    Article  CAS  PubMed  Google Scholar 

  27. Batchelor TT, Grossman SA, Mikkelsen T, Ye X, Desideri S, Lesser GJ. Rituximab monotherapy for patients with recurrent primary CNS lymphoma. Neurology. 2011;76:929–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maza S, Kiewe P, Munz DL, Korfel A, Hamm B, Jahnke K, et al. First report on a prospective trial with yttrium-90-labeled ibritumomab tiuxetan (Zevalin) in primary CNS lymphoma. Neuro Oncol. 2009;11:423–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Villa D, Connors JM, Shenkier TN, Gascoyne RD, Sehn LH, Savage KJ. Incidence and risk factors for central nervous system relapse in patients with diffuse large B-cell lymphoma: the impact of the addition of rituximab to CHOP chemotherapy. Ann Oncol. 2010;21:1046–52. May

    Article  CAS  PubMed  Google Scholar 

  30. Bobillo S, Crespo M, Escudero L, Mayor R, Raheja P, Carpio C, et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica. 2021;106:513–21.

    Article  CAS  PubMed  Google Scholar 

  31. Heger JM, Mattlener J, Schneider J, Godel P, Sieg N, Ullrich F, et al. Entirely noninvasive outcome prediction in central nervous system lymphomas using circulating tumor DNA. Blood. 2024;143:522–34.

  32. Meriranta L, Alkodsi A, Pasanen A, Lepisto M, Mapar P, Blaker YN, et al. Molecular features encoded in the ctDNA reveal heterogeneity and predict outcome in high-risk aggressive B-cell lymphoma. Blood. 2022;139:1863–77.

    Article  CAS  PubMed  Google Scholar 

  33. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8:364ra155.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rivas-Delgado A, Nadeu F, Enjuanes A, Casanueva-Eliceiry S, Mozas P, Magnano L, et al. Mutational landscape and tumor burden assessed by cell-free DNA in diffuse large B-cell lymphoma in a population-based study. Clin Cancer Res. 2021;27:513–21.

    Article  CAS  PubMed  Google Scholar 

  35. Alig S, Macaulay CW, Kurtz DM, Duhrsen U, Huttmann A, Schmitz C, et al. Short diagnosis-to-treatment interval is associated with higher circulating tumor DNA levels in diffuse large B-cell lymphoma. J Clin Oncol. 2021;39:2605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li M, Mi L, Wang C, Wang X, Zhu J, Qi F, et al. Clinical implications of circulating tumor DNA in predicting the outcome of diffuse large B cell lymphoma patients receiving first-line therapy. BMC Med. 2022;20:369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herrera AF, Tracy S, Croft B, Opat S, Ray J, Lovejoy AF, et al. Risk profiling of patients with relapsed/refractory diffuse large B-cell lymphoma by measuring circulating tumor DNA. Blood Adv. 2022;6:1651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magnes T, Wagner S, Thorner AR, Neureiter D, Klieser E, Rinnerthaler G, et al. Clonal evolution in diffuse large B-cell lymphoma with central nervous system recurrence. ESMO Open. 2021;6:100012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lv L, Qi X, Wang C, Ma Y, Nie Y, Abulaiti R, et al. Identification of FAT4 as a positive prognostic biomarker in DLBCL by comprehensive genomic analysis. Clin Exp Med. 2023;23:2675–85.

  40. Bobillo S, Khwaja J, Ferreri AJM, Cwynarski K. Prevention and management of secondary central nervous system lymphoma. Haematologica. 2023;108:673–89.

    Article  CAS  PubMed  Google Scholar 

  41. Bobillo S, Joffe E, Sermer D, Mondello P, Ghione P, Caron PC, et al. Prophylaxis with intrathecal or high-dose methotrexate in diffuse large B-cell lymphoma and high risk of CNS relapse. Blood Cancer J. 2021;11:113.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Orellana-Noia VM, Reed DR, McCook AA, Sen JM, Barlow CM, Malecek MK, et al. Single-route CNS prophylaxis for aggressive non-Hodgkin lymphomas: real-world outcomes from 21 US academic institutions. Blood. 2022;139:413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eyre TA, Kirkwood AA, Wolf J, Hildyard C, Mercer C, Plaschkes H, et al. Stand-alone intrathecal central nervous system (CNS) prophylaxis provide unclear benefit in reducing CNS relapse risk in elderly DLBCL patients treated with R-CHOP and is associated increased infection-related toxicity. Br J Haematol. 2019;187:185–94.

    Article  CAS  PubMed  Google Scholar 

  44. Tavakkoli M, Barta SK. 2024 Update: advances in the risk stratification and management of large B-cell lymphoma. Am J Hematol. 2023;98:1791–805.

  45. Ferreri AJM, Doorduijn JK, Re A, Cabras MG, Smith J, Ilariucci F, et al. MATRix-RICE therapy and autologous haematopoietic stem-cell transplantation in diffuse large B-cell lymphoma with secondary CNS involvement (MARIETTA): an international, single-arm, phase 2 trial. Lancet Haematol. 2021;8:e110–e121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maziarz RT, Wang Z, Zhang MJ, Bolwell BJ, Chen AI, Fenske TS, et al. Autologous haematopoietic cell transplantation for non-Hodgkin lymphoma with secondary CNS involvement. Br J Haematol. 2013;162:648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akin S, Hosing C, Khouri I, Ahmed S, Alousi A, Fowler N, et al. Autologous stem cell transplantation for large B-cell lymphoma with secondary central nervous system involvement. Blood Adv. 2022;6:2267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khwaja J, Kirkwood AA, Isbell LK, Steffanoni S, Goradia H, Pospiech L, et al. International multicenter retrospective analysis of thiotepa-based autologous stem cell transplantation for secondary central nervous system lymphoma. Haematologica. 2023;108:882–8.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (grant number 82200887 and 82370194), Jiangsu Science and Technology Department (grant number BK20220716 and BE2023780), and China Postdoctoral Science Foundation (grant number 2022M711404 and 2023M741463).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jin-Hua Liang and Wei Xu. Collection of study materials or patients’ data: All authors. Assembly of data and data analysis: Jin-Hua Liang, Yi-Fan Wu, and Jun-Heng Liang. Manuscript writing and editing: Jin-Hua Liang, Yi-Fan Wu, Jun-Heng Liang, Chen-Xuan Wang, Liu-Qing Zhu and Wei Xu. Final approval of manuscript: All authors. Accountable for all aspects of the work: All authors.

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval statement

This study was conducted in accordance with the Declaration of Helsinki, and the study protocol was approved by the Ethics Committee of the Institutional Review Broad of Jiangsu Province Hospital (No. 2023-SR-190) and informed consent was retrieved from subjects involved in this study. We have also obtained informed consent for publication of the involved images with anonymization.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JH., Wu, YF., Shen, HR. et al. Clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma. Leukemia (2024). https://doi.org/10.1038/s41375-024-02279-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41375-024-02279-7

Search

Quick links