Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical Research

The effect of obesity pharmacotherapy on body composition, including muscle mass

Abstract

Obesity pharmacotherapy represents a promising approach to treating obesity and may provide benefits beyond weight loss alone. Maintaining or even increasing muscle mass during weight loss is important to overall health, metabolic function and weight loss maintenance. Drugs such as liraglutide, semaglutide, tirzepatide, and naltrexone/bupropion have shown significant weight loss effects, and emerging evidence suggests they may also have effects on body composition, particularly a positive influence on muscle mass. However, further research is needed to fully understand the mechanism of action of these drugs and their effects on muscle mass. Clinicians should consider these factors when developing an obesity treatment plan for an individual patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tiwari A, Balasundaram P. Public health considerations regarding obesity. 2023.

  2. WOA. 2022. One billion people globally estimated to be living with obesity by 2030. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022.

  3. Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel noninvasive approaches to the treatment of obesity: from pharmacotherapy to gene therapy. Endocr Rev. 2022;43:507–57.

    Article  PubMed  Google Scholar 

  4. Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The fight against obesity escalates: new drugs on the horizon and metabolic implications. Curr Obes Rep. 2020;9:136–49.

    Article  PubMed  Google Scholar 

  5. Kim B, Tsujimoto T, So R, Zhao X, Oh S, Tanaka K. Changes in muscle strength after diet-induced weight reduction in adult men with obesity: a prospective study. Diabetes Metab Syndr Obes. 2017;10:187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janssen TAH, Every DWV, Phillips SM. The impact and utility of very low-calorie diets: the role of exercise and protein in preserving skeletal muscle mass. Curr Opin Clin Nutr Metab Care. 2023;26:521–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Argyrakopoulou G, Fountouli N, Dalamaga M, Kokkinos A. Revisiting resting metabolic rate: what is the relation to weight fluctuations? Curr Obes Rep. 2023;12:502–13.

    Article  PubMed  Google Scholar 

  8. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96:2898–903.

    Article  CAS  PubMed  Google Scholar 

  9. McCarthy D, Berg A. Weight loss strategies and the risk of skeletal muscle mass loss. Nutrients. 2021;13:2473. https://doi.org/10.3390/nu13072473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aaseth J, Ellefsen S, Alehagen U, Sundfør TM, Alexander J. Diets and drugs for weight loss and health in obesity - An update. Biomed Pharmacother. 2021;140:111789.

    Article  CAS  PubMed  Google Scholar 

  11. Cava E, Yeat NC, Mittendorfer B. Preserving healthy muscle during weight loss. Adv Nutr. 2017;8:511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weiss EP, Jordan RC, Frese EM, Albert SG, Villareal DT. Effects of weight loss on lean mass, strength, bone, and aerobic capacity. Med Sci Sports Exerc. 2017;49:206–17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;14:12–24.

    Article  CAS  PubMed  Google Scholar 

  14. Stefanakis K, Kokkinos A, Simati S, Argyrakopoulou G, Konstantinidou SK, Kouvari M, et al. Circulating levels of all proglucagon-derived peptides are differentially regulated postprandially by obesity status and in response to high-fat meals vs. high-carbohydrate meals. Clin Nutr. 2023;42:1369–78.

    Article  CAS  PubMed  Google Scholar 

  15. Tsilingiris D, Kokkinos A. Advances in obesity pharmacotherapy; learning from metabolic surgery and beyond. Metabolism. 2023;151:155741.

    Article  PubMed  Google Scholar 

  16. Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, et al. Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism. 2020;103:154044.

    Article  CAS  PubMed  Google Scholar 

  17. Xiang J, Qin L, Zhong J, Xia N, Liang Y. GLP-1RA liraglutide and semaglutide improves obesity-induced muscle atrophy via SIRT1 pathway. Diabetes Metab Syndr Obes. 2023;16:2433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Aylor KW, et al. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin Sci (Lond). 2014;127:163–70.

    Article  CAS  PubMed  Google Scholar 

  19. Kooijman S, Wang Y, Parlevliet ET, Boon MR, Edelschaap D, Snaterse G, et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58:2637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–58.

    Article  CAS  PubMed  Google Scholar 

  21. Eyk, van HJ, Paiman EHM, Bizino MB, IJzermans SL, Kleiburg F, et al. Liraglutide decreases energy expenditure and does not affect the fat fraction of supraclavicular brown adipose tissue in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2020;30:616–24.

    Article  PubMed  Google Scholar 

  22. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22.

    Article  PubMed  Google Scholar 

  23. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: The SCALE diabetes randomized clinical trial. JAMA. 2015;314:687–99.

    Article  CAS  PubMed  Google Scholar 

  24. Idrees Z, Cancarevic I, Huang L. FDA-approved pharmacotherapy for weight loss over the last decade. Cureus. 2022;14:e29262.

    PubMed  PubMed Central  Google Scholar 

  25. Konwar M, Bose D, Jaiswal SK, Maurya MK, Ravi R. Efficacy and safety of liraglutide 3.0 mg in patients with overweight and obese with or without diabetes: a systematic review and meta-analysis. Int J Clin Pr. 2022;2022:1201977.

    Google Scholar 

  26. Ishii S, Nagai Y, Sada Y, Fukuda H, Nakamura Y, Matsuba R, et al. Liraglutide reduces visceral and intrahepatic fat without significant loss of muscle mass in obese patients with type 2 diabetes: a prospective case series. J Clin Med Res. 2019;11:219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grannell A, Martin WP, Dehestani B, Al-Najim W, Murphy JC, Roux CW. Liraglutide does not adversely impact fat-free mass loss. Obes (Silver Spring). 2021;29:529–34.

    Article  CAS  Google Scholar 

  28. Keskin L, Yaprak B. Comparison of the effect of liraglutide and metformin therapy on the disease regulation and weight loss in obese patients with Type 2 diabetes mellitus. Eur Rev Med Pharm Sci. 2022;26:6813–20.

    CAS  Google Scholar 

  29. Perna S, Guido D, Bologna C, Solerte SB, Guerriero F, Isu A, et al. Liraglutide and obesity in elderly: efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin Exp Res. 2016;28:1251–7.

    Article  PubMed  Google Scholar 

  30. Rondanelli M, Perna S, Astrone P, Grugnetti A, Solerte SB, Guido D. Twenty-four-week effects of liraglutide on body composition, adherence to appetite, and lipid profile in overweight and obese patients with type 2 diabetes mellitus. Patient Prefer Adherence. 2016;10:407–13.

    PubMed  PubMed Central  Google Scholar 

  31. Feng W-H, Bi Y, Li P, Yin T-T, Gao C-X, Shen S-M, et al. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: a randomized trial. J Diabetes Investig. 2019;10:399–407.

    Article  CAS  PubMed  Google Scholar 

  32. Yu D, Zou M, Pan Q, Song Y, Li M, Zhang X, et al. Effects of liraglutide or lifestyle interventions combined with other antidiabetic drugs on abdominal fat distribution in people with obesity and type 2 diabetes mellitus evaluated by the energy spectrum ct: A prospective randomized controlled study. Front Endocrinol (Lausanne). 2022;13:951570.

    Article  PubMed  Google Scholar 

  33. Kadouh H, Halawi H, Chedid V, Khemani D, Burton D, Eckert D et al. Tu1921—Liraglutide treatment modulates regional body fat distribution in individuals with obesity. Gastroenterology. 2018;154:S-1054.

  34. Roux, le CW, Astrup A, Fujioka K, Greenway F, Lau DCW, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389:1399–409.

    Article  PubMed  Google Scholar 

  35. Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. Int J Obes (Lond). 2015;39:187.

    Article  CAS  PubMed  Google Scholar 

  36. Therakomen V, Petchlorlian A, Lakananurak N. Prevalence and risk factors of primary sarcopenia in community-dwelling outpatient elderly: a cross-sectional study. Sci Rep. 2020;10:19551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vilarrasa N, Jose PS, Rubio MÁ, Lecube A. Obesity in patients with type 1 diabetes: links, risks and management challenges. Diabetes Metab Syndr Obes. 2021;14:2807–27.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dubé M-C, D’Amours M, Weisnagel SJ. Beyond glycaemic control: a cross-over, double-blinded, 24-week intervention with liraglutide in type 1 diabetes. Diabetes Obes Metab. 2018;20:178–84.

    Article  PubMed  Google Scholar 

  39. Schmidt S, Frandsen CS, Dejgaard TF, Vistisen D, Halldórsson T, Olsen SF, et al. Liraglutide changes body composition and lowers added sugar intake in overweight persons with insulin pump-treated type 1 diabetes. Diabetes Obes Metab. 2022;24:212–20.

    Article  CAS  PubMed  Google Scholar 

  40. Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389:2221–32.

    Article  CAS  PubMed  Google Scholar 

  41. Garvey WT, Batterham RL, Bhatta M, Buscemi S, Christensen LN, Frias JP, et al. Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial. Nat Med. 2022;28:2083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kushner RF, Calanna S, Davies M, Dicker D, Garvey WT, Goldman B, et al. Semaglutide 2.4 mg for the treatment of obesity: key elements of the STEP trials 1 to 5. Obes (Silver Spring). 2020;28:1050–61.

    Article  CAS  Google Scholar 

  43. O’Neil PM, Rubino DM. Exploring the wider benefits of semaglutide treatment in obesity: insight from the STEP program. Postgrad Med. 2022;134:28–36.

    Article  PubMed  Google Scholar 

  44. Wilding JPH, Batterham RL, Calanna S, Davies M, Gaal LFV, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384:989–1002.

    Article  CAS  PubMed  Google Scholar 

  45. Wilding J, Batterham R, Calanna S, Gaal LV, McGowan B, Rosenstock J et al. Impact of semaglutide on body composition in adults with overweight or obesity: exploratory analysis of the STEP 1 study. 2021; 5: A16–A17.

  46. Xiang J, Ding X-Y, Zhang W, Zhang J, Zhang Y-S, Li Z-M, et al. Clinical effectiveness of semaglutide on weight loss, body composition, and muscle strength in Chinese adults. Eur Rev Med Pharm Sci. 2023;27:9908–15.

    CAS  Google Scholar 

  47. Li C-J, Yu Q, Yu P, Yu T-L, Zhang Q-M, Lu S, et al. Changes in liraglutide-induced body composition are related to modifications in plasma cardiac natriuretic peptides levels in obese type 2 diabetic patients. Cardiovasc Diabetol. 2014;13:36.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McCrimmon, Catarig RJ, Frias A-M, Lausvig JP, Roux NL, le CW, et al. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia. 2020;63:473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Volpe S, Lisco G, Fanelli M, Racaniello D, Colaianni V, Triggiani D, et al. Once-weekly subcutaneous semaglutide improves fatty liver disease in patients with type 2 diabetes: a 52-week prospective real-life study. Nutrients. 2022;14:4673. https://doi.org/10.3390/nu14214673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Volpe S, Lisco G, Fanelli M, Racaniello D, Colaianni V, Lavarra V, et al. Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: a 26-week prospective real-life study. Front Endocrinol (Lausanne). 2023;14:1240263.

    Article  PubMed  Google Scholar 

  51. Uchiyama S, Sada Y, Mihara S, Sasaki Y, Sone M, Tanaka Y. Oral semaglutide induces loss of body fat mass without affecting muscle mass in patients with type 2 diabetes. J Clin Med Res. 2023;15:377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blundell J, Finlayson G, Axelsen M, Flint A, Gibbons C, Kvist T, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19:1242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heymsfield SB, Gonzalez MCC, Shen W, Redman L, Thomas D. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. Obes Rev. 2014;15:310–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibbons C, Blundell J, Hoff ST, Dahl K, Bauer R, Baekdal T. Effects of oral semaglutide on energy intake, food preference, appetite, control of eating and body weight in subjects with type 2 diabetes. Diabetes Obes Metab. 2021;23:581–8.

    Article  CAS  PubMed  Google Scholar 

  55. Ozeki Y, Masaki T, Kamata A, Miyamoto S, Yoshida Y, Okamoto M, et al. The effectiveness of GLP-1 receptor agonist semaglutide on body composition in elderly obese diabetic patients: a pilot study. Med (Basel). 2022;9:47. https://doi.org/10.3390/medicines9090047

    Article  CAS  Google Scholar 

  56. Hughes S, Neumiller JJ. Oral semaglutide. Clin Diabetes. 2020;38:109–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Knop, Aroda FK, Vale VR, do RD, Holst-Hansen T, Laursen PN, et al. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;402:705–19.

    Article  CAS  PubMed  Google Scholar 

  58. Abbasi J. FDA green-lights tirzepatide, marketed as zepbound, for chronic weight management. JAMA. 2023;330:2143–4.

    Article  PubMed  Google Scholar 

  59. Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387:205–16.

    Article  CAS  PubMed  Google Scholar 

  60. Nauck MA, D’Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pownall HJ, Schwartz AV, Bray GA, Berkowitz RI, Lewis CE, Boyko EJ, et al. Changes in regional body composition over 8 years in a randomized lifestyle trial: The look AHEAD study. Obes (Silver Spring). 2016;24:1899–905.

    Article  Google Scholar 

  62. Wadden TA, Chao AM, Machineni S, Kushner R, Ard J, Srivastava G, et al. Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: the SURMOUNT-3 phase 3 trial. Nat Med. 2023;29:2909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aronne LJ, Sattar N, Horn DB, Bays HE, Wharton S, Lin W-Y, et al. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: The SURMOUNT-4 randomized clinical trial. JAMA. 2024;331:38–48.

    Article  CAS  PubMed  Google Scholar 

  64. Gastaldelli A, Cusi K, Landó LF, Bray R, Brouwers B, Rodríguez Á. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022;10:393–406.

    Article  CAS  PubMed  Google Scholar 

  65. Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376:595–605.

    Article  CAS  PubMed  Google Scholar 

  66. Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obes (Silver Spring). 2013;21:935–43.

    Article  CAS  Google Scholar 

  67. Wadden TA, Foreyt JP, Foster GD, Hill JO, Klein S, O’Neil PM, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obes (Silver Spring). 2011;19:110–20.

    Article  CAS  Google Scholar 

  68. Smith SR, Fujioka K, Gupta AK, Billes SK, Burns C, Kim D, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15:863–6.

    Article  CAS  PubMed  Google Scholar 

  69. Clapper JR, Athanacio J, Wittmer C, Griffin PS, D’Souza L, Parkes DG, et al. Effects of amylin and bupropion/naltrexone on food intake and body weight are interactive in rodent models. Eur J Pharm. 2013;698:292–8.

    Article  CAS  Google Scholar 

  70. Heymsfield SB, Coleman LA, Miller R, Rooks DS, Laurent D, Petricoul O, et al. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: a phase 2 randomized clinical trial. JAMA Netw Open. 2021;4:e2033457.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GA and EG, research, writing, and proof reading; SK research and proof reading; AK manuscript editing and proof reading; EG, prepared table.

Corresponding author

Correspondence to Georgia Argyrakopoulou.

Ethics declarations

Competing interests

GA reports having received honoraria for lectures from Novo Nordisk, Pharmaserve Lilly, Astra Zeneca, Bausch Health, Menarini Diagnostics, Bohringer Ingelheim, Winmedica, Abbott and serving on advisory boards for Novo Nordisk, Pharmaserve Lilly and Menarini Diagnostics. AK reports having received research grants from Novo Nordisk, Pharmaserve Lilly, and ELPEN Pharma, serving on advisory boards for Novo Nordisk, Pharmaserve Lilly, Sanofi, and Boehringer-Ingelheim, as well as receiving honoraria for lectures from Novo Nordisk, Pharmaserve Lilly, Astra Zeneca, MSD, Sanofi, Bausch Health, Ethicon, Galenica Pharma, and Epsilon Health. EG and SKK declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyrakopoulou, G., Gitsi, E., Konstantinidou, S.K. et al. The effect of obesity pharmacotherapy on body composition, including muscle mass. Int J Obes (2024). https://doi.org/10.1038/s41366-024-01533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-024-01533-3

Search

Quick links