Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis

Key Points

  • There is an incalculable number of potential molecular tRNA species, represented by their post-transcriptionally modified forms, by the presence of isoacceptors and isodecoders as well as by the generation of tRNA fragments and the formation of complexes between tRNAs and various proteins.

  • These molecular species are active, both within and outside of translation, as regulators of cellular homeostasis.

  • Modifications of bases are prominent in regulating translation for adaptation to the local environment.

  • Fragmentation repurposes tRNAs to functions outside of translation, including regulation of gene expression and epigenetics.

  • These repurposed functions of tRNAs and their fragments may have arisen early, during the development of the genetic code.

  • The complexity of the tRNA world is so vast that the analysis of how all these functions and molecular species act together will require tools analogous to those used in designing artificial intelligence systems.

Abstract

The discovery of the genetic code and tRNAs as decoders of the code transformed life science. However, after establishing the role of tRNAs in protein synthesis, the field moved to other parts of the RNA world. Now, tRNA research is blooming again, with demonstration of the involvement of tRNAs in various other pathways beyond translation and in adapting translation to environmental cues. These roles are linked to the presence of tRNA sequence variants known as isoacceptors and isodecoders, various tRNA base modifications, the versatility of protein binding partners and tRNA fragmentation events, all of which collectively create an incalculable complexity. This complexity provides a vast repertoire of tRNA species that can serve various functions in cellular homeostasis and in adaptation of cellular functions to changing environments, and it likely arose from the fundamental role of RNAs in early evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of tRNAs and the various isoacceptors and isodecoders.
Figure 2: The build-up of complexity in the tRNA world.
Figure 3: Complexes of tRNAs with binding partners.
Figure 4: Examples of the many regulatory roles of tRNAs.
Figure 5: tRNA fragments in the regulation of cell biology.
Figure 6: Emergence of tRNA structure from its individual domains.

Similar content being viewed by others

References

  1. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cozen, A. E. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arimbasseri, A. G. et al. RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet. 11, e1005671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 17, 733–743 (2016). This highly readable review describes the latest advances on sperm-mediated epigenetic inheritance and the connection to tRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16, 98–112 (2015). This is a good summary and overview of the historical literature on aspects of tRNA repurposing.

    Article  CAS  PubMed  Google Scholar 

  6. Lyons, S. M., Fay, M. M., Akiyama, Y., Anderson, P. & Ivanov, P. RNA biology of angiogenin: current state and perspectives. RNA Biol. http://dx.doi.org/10.1080/15476286.2016.1272746 (2016). This perspective provides an excellent summary of the broad reach of angiogenin.

  7. Zhang, X., Cozen, A. E., Liu, Y., Chen, Q. & Lowe, T. M. Small RNA modifications: integral to function and disease. Trends Mol. Med. 22, 1025–1034 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyons, S. M., Fay, M. M. & Ivanov,P. in Modified Nucleic Acids in Biology and Medicine (eds Jurga, J., Volker Erdmann, A. & Barciszewski, J.) 27–54 (Springer International Publishing, 2016).

    Book  Google Scholar 

  9. Agris, P. F., Narendran, A., Sarachan, K. & Vare, Y. P. V. & Eruysal, E. in The Enzmes Vol. 41 (ed. Chanfreau, G.) (Elsevier, 2017).

    Google Scholar 

  10. Rich, A. & RajBhandary, U. L. Transfer RNA: molecular structure, sequence, and properties. Annu. Rev. Biochem. 45, 805–860 (1976). This is a classic review of the early structural work on tRNAs and has stood the test of time for its utility.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Kelley, S. O., Steinberg, S. V. & Schimmel, P. Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nature Struct. Biol. 7, 862–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kelley, S. O., Steinberg, S. V. & Schimmel, P. Fragile T-stem in disease-associated human mitochondrial tRNA sensitizes structure to local and distant mutations. J. Biol. Chem. 276, 10607–10611 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Iben, J. R. & Maraia, R. J. tRNA gene copy number variation in humans. Gene 536, 376–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Parisien, M., Wang, X. & Pan, T. Diversity of human tRNA genes from the 1000-genomes project. RNA Biol. 10, 1853–1867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abe, T. et al. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data. Front. Genet. 5, 114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Francklyn, C. & Schimmel, P. Aminoacylation of RNA minihelices with alanine. Nature 337, 478–481 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geslain, R. & Pan, T. Functional analysis of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Cantara, W. A. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39, D195–D201 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Saikia, M., Fu, Y., Pavon-Eternod, M., He, C. & Pan, T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA 16, 1317–1327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22, 1771–1784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torres, A. G., Batlle, E. & Ribas de Pouplana, L. Role of tRNA modifications in human diseases. Trends Mol. Med. 20, 306–314 (2014). This review provides comprehensive coverage of disease connections to tRNA modifications.

    Article  CAS  PubMed  Google Scholar 

  25. Frohlich, K. M. et al. in Modified Nucleic Acids in Biology and Medicine (eds Jurga, J., Volker Erdmann, A. & Barciszewski, J.) 91–130 (Springer International Publishing, 2016).

    Book  Google Scholar 

  26. Lodish, H. F. & Darnell, J. Molecular Cell Biology 3rd edn (Scientific American Books, 1995).

    Google Scholar 

  27. Ibba, M., Francklyn, C. & Cusack, S. The Aminoacyl-tRNA Synthetases. (Landes Bioscience, 2005).

    Google Scholar 

  28. Ling, J. & Söll, D. in Encyclopedia of Biophysics (ed. Roberts Gordon C. K.) 57–61 (Springer, 2013).

    Book  Google Scholar 

  29. Beebe, K., Mock, M., Merriman, E. & Schimmel, P. Distinct domains of tRNA synthetase recognize the same base pair. Nature 451, 90–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ruan, L. L., Zhou, X. L., Tan, M. & Wang, E. D. Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity. Biochem. J. 450, 243–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Yao, P. & Fox, P. L. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol. Med. 5, 332–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao, P., Poruri, K., Martinis, S. A. & Fox, P. L. Non-catalytic regulation of gene expression by aminoacyl-tRNA synthetases. Top. Curr. Chem. 344, 167–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Arif, A. et al. EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature 542, 357–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ofir-Birin, Y. et al. Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol. Cell 49, 30–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Ahn, Y. H. et al. Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection. Nat. Microbiol. 2, 16191 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Motzik, A., Nechushtan, H., Foo, S. Y. & Razin, E. Non-canonical roles of lysyl-tRNA synthetase in health and disease. Trends Mol. Med. 19, 726–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Guo, M. & Schimmel, P. Essential nontranslational functions of tRNA synthetases. Nature Chem. Biol. 9, 145–153 (2013).

    Article  CAS  Google Scholar 

  38. Lo, W. S. et al. Human tRNA synthetase catalytic nulls with diverse functions. Science 345, 328–332 (2014). This is a summary of the splice variants of human tRNA synthetases, many of which can interact with tRNAs to form a wide class of protein–tRNA complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gale, A. J. & Schimmel, P. Isolated RNA binding domain of a class I tRNA synthetase. Biochemistry 34, 8896–8903 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Wright, D. J., Martinis, S. A., Jahn, M., Söll, D. & Schimmel, P. Acceptor stem and anticodon RNA hairpin helix interactions with glutamine tRNA synthetase. Biochimie 75, 1041–1049 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Morales, A. J., Swairjo, M. A. & Schimmel, P. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. EMBO J. 18, 3475–3483 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Swairjo, M. A., Morales, A. J., Wang, C. C., Ortiz, A. R. & Schimmel, P. Crystal structure of trbp111: a structure-specific tRNA-binding protein. EMBO J. 19, 6287–6298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kushiro, T. & Schimmel, P. Trbp111 selectively binds a noncovalently assembled tRNA-like structure. Proc. Natl Acad. Sci. USA 99, 16631–16635 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Fett, J. W. et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480–5486 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Strydom, D. J. et al. Amino acid sequence of human tumor derived angiogenin. Biochemistry 24, 5486–5494 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Vallee, B. L. et al. Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review. Experientia 41, 1–15 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Honda, S. et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl Acad. Sci. USA 112, E3816–E3825 (2015). This paper connected sex hormone tumorigenesis with aminoacylated tRNAs that are cleaved by angiogenin.

    Article  CAS  PubMed  Google Scholar 

  48. Novoa, E. M. & Ribas de Pouplana, L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 28, 574–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Rudolph, K. L. et al. Codon-driven translational efficiency is stable across diverse mammalian cell states. PLoS Genet. 12, e1006024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165, 1416–1427 (2016). This is a powerful study of adaptive translation driving cancer development and progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bazzini, A. A. et al. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J. 35, 2087–2103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ishimura, R. et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014). This reports describes the first example of a tissue-specific isodecoder connected to neuronal homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishimura, R., Nagy, G., Dotu, I., Chuang, J. H. & Ackerman, S. L. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. eLife http://dx.doi.org/10.7554/eLife.14295 (2016).

  55. Shigi, N. in Modified Nucleic Acids in Biology and Medicine (eds Jurga, J., Volker Erdmann, A. & Barciszewski, J.) 55–71 (Springer International Publishing, 2016).

    Book  Google Scholar 

  56. Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 1897 (2016). This was the first detailed investigation of how a specific base modification can regulate translation.

    Article  CAS  PubMed  Google Scholar 

  57. Agris, P. F., Vendeix, F. A. & Graham, W. D. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Maehigashi, T., Dunkle, J. A., Miles, S. J. & Dunham, C. M. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc. Natl Acad. Sci. USA 111, 12740–12745 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, T. & Suzuki, T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 42, 7346–7357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cai, W. M. et al. A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications. Methods Enzymol. 560, 29–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chionh, Y. H. et al. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nature Commun. 7, 13302 (2016). This work describes an in-depth RNA-Seq array analysis to study how a specific tRNA modification mobilizes adaptive translation to enable survival and persistence of an intracellular pathogen.

    Article  CAS  Google Scholar 

  63. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leistikow, R. L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J. Bacteriol. 192, 1662–1670 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Majumdar, S. D. et al. Appropriate DevR (DosR)-mediated signaling determines transcriptional response, hypoxic viability and virulence of Mycobacterium tuberculosis. PLoS ONE 7, e35847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Selvaraj, S., Sambandam, V., Sardar, D. & Anishetty, S. In silico analysis of DosR regulon proteins of Mycobacterium tuberculosis. Gene 506, 233–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Saint-Leger, A. et al. Saturation of recognition elements blocks evolution of new tRNA identities. Sci. Adv. 2, e1501860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ivanov, P. et al. G-Quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl Acad. Sci. USA 111, 18201–18206 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lyons, S. M., Achorn, C., Kedersha, N. L., Anderson, P. J. & Ivanov, P. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res. 44, 6949–6960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. et al. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J. Mol. Cell. Biol. 6, 172–174 (2014).

    Article  PubMed  Google Scholar 

  73. Dhahbi, J. M. et al. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 14, 298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mishima, E. et al. Conformational change in transfer RNA is an early indicator of acute cellular damage. J. Am. Soc. Nephrol. 25, 2316–2326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saikia, M. et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol. Cell. Biol. 34, 2450–2463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mei, Y. et al. tRNA binds to cytochrome c and inhibits caspase activation. Mol. Cell 37, 668–678 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802 (2015). This is an in-depth study of how tRNA fragments capture and disable pro-oncogenic transcripts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Uchiumi, T. et al. YB-1 is important for an early stage embryonic development: neural tube formation and cell proliferation. J. Biol. Chem. 281, 40440–40449 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Lasham, A. et al. YB-1, the E2F pathway, and regulation of tumor cell growth. J. Natl Cancer Inst. 104, 133–146 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Wu, Y. et al. Strong YB-1 expression is associated with liver metastasis progression and predicts shorter disease-free survival in advanced gastric cancer. J. Surg. Oncol. 105, 724–730 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Jurchott, K. et al. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet. 6, e1001231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saikia, M. et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J. Biol. Chem. 287, 42708–42725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pekarsky, Y. et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc. Natl Acad. Sci. USA 113, 5071–5076 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Goncalves, K. A. et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166, 894–906 (2016). This study reveals the surprising role of angiogenin in dichotomous regulation of haematopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carone, B. R. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ng, S. F. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Shea, J. M. Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev. Cell 35, 750–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gapp, K. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rassoulzadegan, M. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Peng, H. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 22, 1609–1612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016). References 91 and 92 are back-to-back landmark papers on tRNA fragmentation in sperm-mediated epigenetic inheritance.

    Article  CAS  PubMed  Google Scholar 

  93. Schoorlemmer, J., Perez-Palacios, R., Climent, M., Guallar, D. & Muniesa, P. Regulation of mouse retroelement MuERV-L/MERVL expression by REX1 and epigenetic control of stem cell potency. Front. Oncol. 4, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Blanco, S. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 33, 2020–2039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010). This is an in-depth study of how m5C methylation of tRNAs regulates stem cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Tuorto, F. et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nature Struct. Mol. Biol. 19, 900–905 (2012).

    Article  CAS  Google Scholar 

  98. Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Blanco, S. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet. 7, e1002403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Frugier, M., Florentz, C. & Giegé, R. Anticodon-independent aminoacylation of an RNA minihelix with valine. Proc. Natl Acad. Sci. USA 89, 3990–3994 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Rudinger, J., Florentz, C., Dreher, T. & Giegé, R. Efficient mischarging of a viral tRNA-like structure and aminoacylation of a minihelix containing a pseudoknot: histidinylation of turnip yellow mosaic virus RNA. Nucleic Acids Res. 20, 1865–1870 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Frugier, M., Florentz, C. & Giegé, R. Efficient aminoacylation of resected RNA helices by class II aspartyl-tRNA synthetase dependent on a single nucleotide. EMBO J. 13, 2218–2226 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Felden, B. & Giegé, R. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase. Proc. Natl Acad. Sci. USA 95, 10431–10436 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Sampson, J. R. & Saks, M. E. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates. Nucleic Acids Res. 21, 4467–4475 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saks, M. E. & Sampson, J. R. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNA(Ser) acceptor stem by E.coli seryl-tRNA synthetase. EMBO J. 15, 2843–2849 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hamann, C. S. & Hou, Y. M. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Biochemistry 34, 6527–6532 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Nierhaus, K. H., Franceschi, F. o., Subramanian, A. R., Erdmann, V. A. & Wittmann-Liebold, B. The Translational Apparatus: Structure, Function, Regulation, Evolution (Springer, 1993).

    Book  Google Scholar 

  108. Beuning, P. J. & Musier-Forsyth, K. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers 52, 1–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Musier-Forsyth, K. & Schimmel, P. Atomic determinants for aminoacylation of RNA minihelices and relationship to genetic code. Accounts Chem. Res. 32, 368–375 (1999).

    Article  CAS  Google Scholar 

  110. de Duve, C. Transfer RNAs: the second genetic code. Nature 333, 117–118 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Möller, W. & Janssen, G. M. Statistical evidence for remnants of the primordial code in the acceptor stem of prokaryotic transfer RNA. J. Mol. Evol. 34, 471–477 (1992).

    Article  PubMed  Google Scholar 

  112. Rodin, S., Rodin, A. & Ohno, S. The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc. Natl Acad. Sci. USA 93, 4537–4542 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Branciamore, S. & Di Giulio, M. The presence in tRNA molecule sequences of the double hairpin, an evolutionary stage through which the origin of this molecule is thought to have passed. J. Mol. Evol. 72, 352–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Schimmel, P., Giegé, R., Moras, D. & Yokoyama, S. An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl Acad. Sci. USA 90, 8763–8768 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Weiner, A. M. & Maizels, N. tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc. Natl Acad. Sci. USA 84, 7383–7387 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. Weiner, A. M. & Maizels, N. Molecular evolution. Unlocking the secrets of retroviral evolution. Curr. Biol. 4, 560–563 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Blackburn, E. H. Telomerases. Annu. Rev. Biochem. 61, 113–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, H. & Lambowitz, A. M. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor. Cell 75, 1071–1081 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Mak, J. & Kleiman, L. Primer tRNAs for reverse transcription. J. Virol. 71, 8087–8095 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kleiman, L., Jones, C. P. & Musier-Forsyth, K. Formation of the tRNALys packaging complex in HIV-1. FEBS Lett. 584, 359–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Randau, L. & Söll, D. Transfer RNA genes in pieces. EMBO Rep. 9, 623–628 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fujishima, K. et al. Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc. Natl Acad. Sci. USA 106, 2683–2687 (2009). This report is a striking analysis of split tRNA genes and the evidence for the assembly of full tRNAs from the split pieces.

    Article  CAS  PubMed  Google Scholar 

  123. Zuo, Z. et al. Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves. Mol. Biol. Evol. 30, 2087–2098 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Geslain, R. & Ribas de Pouplana, L. Regulation of RNA function by aminoacylation and editing? Trends Genet. 20, 604–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Kumar, P., Kuscu, C. & Dutta, A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 41, 679–689 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zheng, L. L. et al. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res. 44, W185–W193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nientiedt, M. et al. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma. Sci. Rep. 6, 37158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, Q. et al. tRNA-derived small non-coding RNAs in response to ischemia inhibit angiogenesis. Sci. Rep. 6, 20850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Keam, S. P. & Hutvagner, G. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life (Basel) 5, 1638–1651 (2015).

    CAS  Google Scholar 

  130. [No authors listed.] Digital intuition. Nature 529, 437 (2016).

  131. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Yamasaki, S., Ivanov, P., Hu, G. F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Gomes, A. C. et al. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 8, R206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, L. et al. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Proc. Natl Acad. Sci. USA 108, 9378–9383 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Javid, B. et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl Acad. Sci. USA 111, 1132–1137 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Fan, Y. et al. Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res. 43, 1740–1748 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bullwinkle, T. J. & Ibba, M. Translation quality control is critical for bacterial responses to amino acid stress. Proc. Natl Acad. Sci. USA 113, 2252–2257 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, J. Y. et al. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J. Cell Sci. 127, 4234–4245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schwartz, M. H., Waldbauer, J. R., Zhang, L. & Pan, T. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli. Nucleic Acids Res. 44, 10292–10303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sun, L. et al. Evolutionary gain of alanine mischarging to noncognate tRNAs with a G4:U69 base pair. J. Am. Chem. Soc. 138, 12948–12955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Dr Bernhard Kuhle and Mr Ryan Shapiro for extensive efforts on the artwork, and Professor Xianglei Yang for advice on construction of thematic elements. I am most appreciative of the instructive comments made by an anonymous reviewer on the section on complexity in the Concluding Remarks. Lastly, I also thank the following colleagues in the field, who collectively made extensive comments on a draft of this manuscript: Susan Ackerman (U. California, San Diego), Paul Agris (SUNY at Albany), Qi Chen (U. Nevada School of Medicine, Reno), Peter Dedon (MIT), Michaela Fry (University of Cambridge), Michael Ibba (Ohio State University, Columbus), Pavel Ivanov (Harvard Medical School), Karin Musier-Forsyth (Ohio State University, Columbus), Tao Pan (University of Chicago), Lluis Ribas de Pouplana (Institute for Research in Biomedicine, Barcelona) and Sohail Tavazoie (Rockefeller University). This work was supported by a fellowship from the National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schimmel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Angiogenin and other nucleases involved in tRNA fragmentation (PDF 138 kb)

Supplementary information S2 (box)

Mutations in tRNA modification enzymes are associated with human diseases. (PDF 128 kb)

PowerPoint slides

Glossary

Trans-acting editing factors

Editing domains that are not linked to tRNA synthetases, where they act in cis as part of the synthetase, but rather are 'free-standing' and can erase mistakes of aminoacylation by directly binding to a mischarged tRNA.

mTOR signalling

A major signalling pathway for integrated cellular signalling pathways in eukaryotes.

Stress granules

Tightly packed aggregates of proteins and RNA that appear under stress.

RNA exosome

A multi-protein complex that degrades specific RNAs in an extracellular vesicle known as an exosome.

Integrated stress response

A response to stress found in eukaryotes, where global protein synthesis is diminished to conserve cellular energy.

Granulomas

Masses of immune cells (macrophages) that surround and sequester invading pathogens.

Dos regulon

A group of genes that act together to enable the survival and persistence of Mycobacterium tuberculosis in host cells.

Cold shock domain

A protein domain designed to bind DNA and found to facilitate survival of bacteria when exposed to drops in temperature. The domain is widely distributed in proteins throughout evolution.

G-quadruplex

A naturally occurring four-stranded nucleic acid helical structure that has a high proportion of guanine bases.

Cytochrome c

A small haem-containing mitochondrial protein that is essential for electron transport.

Apoptosome

An oligomeric protein complex minimally comprising cytochrome c and apoptosis protease-activating factor 1 (APAF1), which cleaves a protease precursor (pro-caspase 9) that then triggers downstream protein cleavage events leading to cell death.

Hormone-sensitive cancers

Cancers that grow when stimulated by specific hormones, such as oestrogen or testosterone.

Epididymis

A narrow, tightly coiled tube several metres in length that serves as the site of sperm maturation.

Retrotransposon

DNA genetic element that copies itself by reverse transcription through an RNA intermediate and can insert itself at various target sites within the genome. These elements are widespread in the human genome.

Microcephaly

A size of head that is at least two standard deviations below that of a normal head.

RNA world hypothesis

The hypothesis that RNA appeared before proteins and had many of the catalytic and ligand-binding characters of the modern proteins that eventually took over many of these functions.

Mauriceville plasmid

A circular DNA that replicates in some strains of Neurospora crassa through an RNA intermediate that has a tRNA-like structure at its 3′-end.

Telomerase

A ribonucleoprotein that catalyses the addition of nucleotide-repeat elements to the ends of chromosomes.

Ischaemia

A shortage of blood supply that deprives tissues of the oxygen and glucose needed for cell survival.

Extracellular vesicles

Membranous vesicles released from cells and containing proteins, RNAs and other cellular constituents.

Artificial intelligence systems

Computer programmes that are designed to make choices and decisions, and solve problems, by cognitive human-like, experience-based learning.

Neutral drift

The hypothesis that, at the molecular level, non-harmful (neutral) mutations are the main anomalies accounting for gene sequence variations among and between species in evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol 19, 45–58 (2018). https://doi.org/10.1038/nrm.2017.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing