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In their recent Review (Genetic architec-
ture: the shape of the genetic contribution to 
human traits and disease. Nat. Rev. Genet. 19, 
110–124 (2018))1, Timpson et al. discuss the 
importance of genetic architecture in human 
disease and some methods to measure and 
understand genetic architecture. Their discus-
sion of genetic architecture assessment focuses 
primarily on genome-wide association stud-
ies (GWAS), whole-exome sequencing and 
whole-genome sequencing approaches to 
identify variants statistically linked to pheno-
types of interest. In addition to their excellent 
treatment of these tools, they mention only 
briefly recent approaches that use genome-
wide markers to explore the heritability of 
traits, including partitioned heritability, citing 
a relevant 2013 review of heritability meth-
ods2. However, rapid advances since 2013 
have made these approaches particularly rele
vant to assessing genetic architecture. Here, 
we highlight three areas where genome-wide 
methods can add to the understanding of 
genetic architecture.

First, partitioned variance component 
models using restricted maximum likelihood 
(REML) can explore the relative contribution 
of variants across the allele frequency spec-
trum or relevant annotations to phenotypic 
variance. These methods (termed genomic 
relationship matrix-REML, or GREML3) 
estimate the genetic variance attributable to 
single nucleotide polymorphisms (SNPs) 
partitioned into various bins or annotations, 
thereby estimating the contribution of par-
ticular gene networks or annotations4 or, in 
combination with deep imputation panels and 
large sample sizes, reliably partitioning pheno-
typic variance due to common, low-frequency 
or very rare genetic variants5. Specifically, par-
titioning by linkage disequilibrium (LD) and 
minor allele frequency (LDMS) can accurately 
estimate the contribution of variants across 
the frequency spectrum6. These approaches 
have now also been extended to infer the role 

of purifying selection across the genome7,8 
and gene–environment (GxE) interactions9. 
Notably, they can estimate genetic variance 
even when no or few genome-wide signifi-
cant GWAS hits have been identified (for an 
example see REF. 10).

Second, computationally efficient, par-
titioned LD score regression (LDSC)11–13 
relates the LD tagging of common SNPs to 
their GWAS summary statistics to estimate 
heritability. By quantifying the heritability 
enrichment of particular annotations (and 
not limiting to coding variation), partitioned 
LDSC can elucidate functional domains that 
contribute to phenotypic variation, illuminat-
ing differences in the genetic architecture of 
traits, such as levels of triglycerides and low-
density lipoprotein (LDL)13, and evolutionary 
connections, such as purifying selection and 
allele age11.

Last, GREML and LDSC can be used to 
explore the genetic correlation of traits14,15. 
This may be due to pleiotropy of variants, to 
close proximity and linkage of multiple vari-
ants that have an impact on different traits, or 
to long-range gametic phase disequilibrium 
caused by cross-trait assortative mating. 
Bivariate analyses have been used to clarify 
expected genetic correlations between traits, 
for instance, hypertension and type 2 diabetes 
mellitus14 or high-density lipoprotein (HDL) 
and triglyceride levels15. However, these 
approaches have also highlighted genetic 
correlations that may have been previously 
unexpected, for instance, substantial positive 
genetic correlations among bipolar disorder, 
major depression and schizophrenia10,15.

Marker-based heritability estimation meth-
ods, used to partition genetic variance among 
annotations or allele frequencies, or to estimate 
genetic correlations, are a powerful and rapidly 
advancing set of tools that can aid our under-
standing of genetic architecture, help guide 
study design and support the exploration of 
the forces that shape genetic variation.
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