Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A combinatorial approach to hybrid enzymes independent of DNA homology

Abstract

We present a methodology, termed incremental truncation for the creation of hybrid enzymes (ITCHY), that creates combinatorial fusion libraries between genes in a manner that is independent of DNA homology. We compared the ability of ITCHY and DNA shuffling to create interspecies fusion libraries between fragments of the Escherichia coli and human glycinamide ribonucleotide transformylase genes, which have only 50% identity on the DNA level. Sequencing of several randomly selected positives from each library illustrated that ITCHY identified a more diverse set of active fusion points including those in regions of nonhomology and those with crossover points that diverged from the sequence alignment. Furthermore, some of the hybrids found by ITCHY that were fused at nonhomologous locations had activities that were greater than or equal to the activity of the hybrids found by DNA shuffling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ITCHY combinatorial protein engineering.
Figure 2: Size distribution of libraries.
Figure 3: Fusion points of active PurN–GART hybrids relative to the alignment of PurN and GART.
Figure 4: Fusion points of active PurN–GART hybrids mapped onto the structure of PurN31.

Similar content being viewed by others

References

  1. Stemmer, W.P.C. D.N.A shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).

    Article  CAS  Google Scholar 

  2. Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288– 291 (1998).

    Article  CAS  Google Scholar 

  3. Zhao, H., Giver, L., Shao, Z. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).

    Article  CAS  Google Scholar 

  4. Shao, Z., Zhao, H., Giver, L. & Arnold, F.H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26, 681–683 (1998).

    Article  CAS  Google Scholar 

  5. Joo, H., Lin, Z. & Arnold, F.H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670– 673 (1999).

    Article  CAS  Google Scholar 

  6. Stemmer, W.P.C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 ( 1994).

    Article  CAS  Google Scholar 

  7. Arnold, F.H. & Moore, J.C. Optimizing industrial enzymes by directed evolution. Adv. Biochem. Eng. Biotechnol. 58, 1–14 (1997).

    CAS  PubMed  Google Scholar 

  8. Proba, K., Wörn, A., Honegger, A. & Plückthun, A. Antibody scFv fragments without disulfide bonds made by molecular evolution. J. Mol. Biol 275, 245– 253 (1998).

    Article  CAS  Google Scholar 

  9. Giver, L., Gershenson, A., Freskgard, P.-O. & Arnold, F.H. Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12809–12813 (1998).

    Article  CAS  Google Scholar 

  10. Zhao, H. & Arnold, F.H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53 (1999).

    Article  CAS  Google Scholar 

  11. Buchholz, F., Angrand, P.-O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).

    Article  CAS  Google Scholar 

  12. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315– 319 (1996).

    Article  CAS  Google Scholar 

  13. Zhang, J.-H., Dawes, G. & Stemmer, W.P.C. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509 (1997).

    Article  CAS  Google Scholar 

  14. Bogorad, L.D. & Deem, M.W. A hierarchical approach to protein molecular evolution. Proc. Natl. Acad. Sci. USA 96, 2591–2595 (1999).

    Article  Google Scholar 

  15. Ostermeier, M., Nixon, A.E., Shim, J.H. & Benkovic, S.J. Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad. Sci. USA 96, 3562–3567 ( 1999).

    Article  CAS  Google Scholar 

  16. Ostermeier, M., Nixon, A.E. & Benkovic, S.J. Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem. 7, 2139–2144 (1999).

    Article  CAS  Google Scholar 

  17. Tomb, J.-F. & Barcak, G.J. Regulating the 3′-5′ activity of exonuclease III by varying the sodium chloride concentration. Biotechniques 7, 932–933 (1989).

    CAS  PubMed  Google Scholar 

  18. Wu, R. et al. Synchronous digestion of SV40 DNA by exonuclease III. Biochemistry 15, 734–740 ( 1976).

    Article  CAS  Google Scholar 

  19. Smith, J.M. & Daum, H.A. Identification and nucleotide sequence of a gene encoding 5′-phosphoribosylglycinamide transformylase in Escherichia coli K12. J. Biol. Chem. 262, 10565–10569 (1987).

    CAS  PubMed  Google Scholar 

  20. Aimi, J., Qiu, H., Williams, J., Zalkin, H. & Dixon, J.E. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Nucleic Acids Res. 18, 6665–6672 (1990).

    Article  CAS  Google Scholar 

  21. Caperelli, C.A. & Giroux, E.L. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism. Arch. Biochem. Biophys. 341, 98–103 (1997).

    Article  CAS  Google Scholar 

  22. Kan, C.-C. et al.. Heterologous expression and purification of active human phosphoribosylglycinamide formyltrasnferase as a single domain. J. Protein. Chem. 11, 467–473 (1992).

    Article  CAS  Google Scholar 

  23. Varney, M.D. et al. Protein structure based design, synthesis, and biological evaluation of 5-thia-2,6-diamino-4(3H)-oxopyrimidines: potent inhibitors of glycinamide ribonucleotide transformylase with potent cell growth inhibition. J. Med. Chem. 40, 2502–2524 (1997).

    Article  CAS  Google Scholar 

  24. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol 112, 535– 542 (1977).

    Article  CAS  Google Scholar 

  25. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  26. Hallet, B., Sherratt, D.J. & Hayes, F. Pentapeptide scanning mutagenesis: random insertion of a variable five amino acid cassette in a target protein. Nucleic Acids Res. 25, 1866–1867 (1997).

    Article  CAS  Google Scholar 

  27. Zebala, J. & Barany, F. Mapping catalytically important regions of an enzyme using two-codon insertion mutagenesis: a case study correlating β-lactamase mutants with the three-dimensional structure. Gene 100, 51–57 (1991).

    Article  CAS  Google Scholar 

  28. Betton, J.-M., Jacob, J.P., Hofnung, M. & Broome-Smith, J.K. Creating a bifunctional protein by insertion of β-lactamase into the maltodextrin-binding protein. Nat. Biotechnol. 15, 1276– 1279 (1997).

    Article  CAS  Google Scholar 

  29. Biondi, R.M., Baehler, P.J., Reymond, C.D. & Véron, M. Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum. Nucleic Acids Res. 26, 4946–4952 ( 1998).

    Article  CAS  Google Scholar 

  30. Warren, M.S., Marolewski, A.E. & Benkovic, S.J. A rapid screen of active site mutants in glycinamide ribonucleotide transformylase. Biochemistry 35, 8855–8862 (1996).

    Article  CAS  Google Scholar 

  31. Almassy, R.J., Janson, C.A., Kan, C.-C. & Hostomska, Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc. Natl. Acad. Sci. USA 89, 6114– 6118 (1992).

    Article  CAS  Google Scholar 

  32. Hopfner, K.-P. et al. New enzyme lineages by subdomain shuffling. Proc. Natl. Acad. Sci. USA 95, 9813–9818 (1998).

    Article  CAS  Google Scholar 

  33. Nixon, A.E., Warren, M.S. & Benkovic, S.J. Assembly of an active enzyme by the linkage of two protein modules. Proc. Natl. Acad. Sci. USA 94, 1069–1073 (1997).

    Article  CAS  Google Scholar 

  34. Nixon, A.E., Ostermeier, M. & Benkovic, S.J. Hybrid enzymes: manipulating enzyme design. Trends Biotechnol. 16, 258–264 (1998).

    Article  CAS  Google Scholar 

  35. Zhao, H. & Arnold, F.H. Optimization of DNA shuffling for high fidelity. Nucleic Acids Res. 25, 1307 –1308 (1997).

    Article  CAS  Google Scholar 

  36. Shim, J.H. & Benkovic, S.J. Evaluation of the kinetic mechanism of Escherichia coli glycinamide ribonucleotide transformylase. Biochemistry 37, 8776–8782 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.E. Nixon, C.P. Scott, and S.M. Firestine for many helpful discussions, and L.T. Gooljarsingh for purified GARS–AIRS–GART. This work was supported in part by National Institutes of Health Grant GM24129 (S.J.B.) and National Institutes of Health Postdoctoral Fellowship GM18560 (M.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Benkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostermeier, M., Shim, J. & Benkovic, S. A combinatorial approach to hybrid enzymes independent of DNA homology . Nat Biotechnol 17, 1205–1209 (1999). https://doi.org/10.1038/70754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing