Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic Analysis of Protein Folding Pathways

Abstract

Optimal application of protein engineering technology will require understanding how the amino acid sequence of a polypeptide chain specifies its spatial conformation. It is now clear that polypeptide chain folding and subunit assembly proceeds through sequential pathways involving defined intermediates. The critical amino acid instructions directing these pathways appear to be dispersed through the sequence. Recent genetic approaches have begun to identify which residues in a chain are important in maintaining the pathway, and avoiding aggregated states. Investigations of the P22 tailspike endorhamnosidase suggest that one general class of mutants, tss mutants, may be particularly informative in identifying sequences determining the conformation of the intermediates. Certain inherited human diseases may represent single amino acid substitutions causing folding defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kleid, D.G., Yansura, D., Small, B., Dowbenko, D., Moore, D.M., Grubman, M.J., McKercher, P.D., Morgan, D.O., Robertson, B.H. and Bachrach, H.L. 1981. Cloned viral protein vaccine for Foot-and-Mouth disease: Responses in cattle and swine. Science 214:1125–1129.

    Article  CAS  PubMed  Google Scholar 

  2. Simons, G., Remaut, E., Allet, B., Devos, R. and Fiers, W. 1984. High-level expression of human interferon gamma in Escherichia coli under control of the p1 promoter of bacteriophage lambda genes. Gene 28:55–64.

    Article  CAS  PubMed  Google Scholar 

  3. Schoner, R.G., Ellis, L.F. and Schoner, B.E. 1985. Isolation and purification of protein granules from Escherichia coli cells overproducing bovine growth hormone. Bio/Technology 3:151–154.

    Article  CAS  Google Scholar 

  4. Masui, Y., Mizuno, T. and Inouye, M. 1984. Novel high-level expression cloning vehicles: 104-fold amplification of Escherichia coli minor protein. Bio/Technology 3:81–85.

    Google Scholar 

  5. Benson, S.A., Hall, M.N. and Silhavy, T.J. 1985. Genetic analysis of protein export in Escherichia coli. Ann. Rev. Biochem. 54:101–134.

    Article  CAS  PubMed  Google Scholar 

  6. Rossman, M. and Argos, P. 1981. Protein folding. Ann. Rev. Biochem 50:497–532.

    Article  Google Scholar 

  7. Dickerson, R.E. and Geis, I. 1983. Hemoglobin: Structure, Function, Evolution, and Pathology. Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  8. Krebs, H., Schmid, F.X. and Jaenicke, R. 1983. Folding of homologous proteins. The refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation. J. Mol. Biol. 169:619–635.

    Article  CAS  PubMed  Google Scholar 

  9. Ackers, G.K. and Smith, F.R. 1985. Effects of site-specific amino acid modifications on protein interactions and biological function. Ann. Rev. Biochem. 54:597–629.

    Article  CAS  PubMed  Google Scholar 

  10. Craik, C.S., Largman, C., Fletcher, T., Roczniak, S., Barr, P.J., Fletterick, R. and Rutter, W.J. 1985. Redesigning trypsin: Alteration of substrate specificity. Science 228:291–297.

    Article  CAS  PubMed  Google Scholar 

  11. Hecht, M.H. and Sauer, R.T. 1985. Phage lambda represser revertants. Amino acid substitutions that restore activity to mutant proteins. J. Mol. Biol. 186:53–63.

    Article  CAS  PubMed  Google Scholar 

  12. Epstein, R.H., Bolle, A., Steinberg, E.M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R.S., Susman, M., Denhardt, G.H. and Lielausis, A. 1963. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp. Quant. Biol. 28:375–394.

    Article  CAS  Google Scholar 

  13. Miller, J.H., Coulondre, C., Hofer, M., Schmeissner, U., Sommer, H. and Schmitz, A. 1979. Generation of altered proteins by the suppression of nonsense mutations. J. Mol. Biol. 131:191–222.

    Article  CAS  PubMed  Google Scholar 

  14. Kabsch, W. and Sander, C. 1984. On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformations. Proc. Nat. Acad. Sci. USA. 81:1075–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brems, D.N. and Baldwin, R.L. 1985. Protection of amide protons in folding intermediates of ribonuclease A measured by pH-pulse exchange curves. Biochem. 24:1689–1693.

    Article  CAS  Google Scholar 

  16. Kuwajima, K., Hiraoka, Y., Ikeguchi, M. and Sugai, S. 1985. Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin. Biochem. 24:874–881.

    Article  CAS  Google Scholar 

  17. Baldwin, R.L. 1975. Intermediates in protein folding reactions and the mechanism of protein folding. Ann. Rev. Biochem. 44:453–475.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, P.S. and Baldwin, R.L. 1982. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding pathways. Ann. Rev. Biochem. 51:459–489.

    Article  CAS  PubMed  Google Scholar 

  19. Creighton, T.E. 1978. Experimental studies of protein folding and unfolding. Prog. in Biophys. and Mol. Biol. 33:231–298.

    Article  CAS  Google Scholar 

  20. Creighton, T.E. and Goldenberg, D.P. 1984. Kinetic role of a metastable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 179:497–526.

    Article  CAS  PubMed  Google Scholar 

  21. Lin, S.H., Konishi, Y., Nall, B.T. and Scheraga, H.A. 1985. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Kinetics of folding-unfolding. Biochem. 24:2680–2686.

    Article  CAS  Google Scholar 

  22. Mitchinson, C. and Pain, R.H. 1985. Effects of sulphate and urea on the stability and reversible unfolding of beta-lactamase from Staphylococcus aureus. Implications for the folding pathway of beta-lactamase. J. Mol. Biol. 184:331–342.

    Article  CAS  PubMed  Google Scholar 

  23. Blond, S. and Goldberg, M.E. 1985. Kinetics and importance of the dimerization step in the folding pathway of the beta-2 subunit of Escherichia coli tryptophan synthase. J. Mol. Biol. 182:597–606.

    Article  CAS  PubMed  Google Scholar 

  24. Jaenicke, R. and Rudolph, R. 1983. What NAD-dependent dehydrogenases teach us about the folding and association of oligomeric proteins, p.62–90. In: Biological Oxidations. H. Sund and V. Ullrich (eds.). Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  25. Blundell, T. and Wood, S. 1982. The conformation, flexibility, and dynamics of polypeptide hormones. Ann. Rev. Biochem. 51:123–154.

    Article  CAS  PubMed  Google Scholar 

  26. Kaiser, E.T. and Kezdy, F.J. 1984. Amphiphilic secondary structure: Design of peptide hormones. Science 223:249–255.

    Article  CAS  PubMed  Google Scholar 

  27. Briggs, M.S. and Gierasch, L.M. 1986. Molecular mechanisms of protein secretion: The role of the signal sequence. Adv. Prot. Chem. 38:in Press.

  28. Bierzynski, A., Kim, P.S. and Baldwin, R.L. 1982. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc. Nat. Acad. Sci. USA. 79:2470–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, P.S. and Baldwin, R.L. 1984. A helix stop signal in the isolated S-peptide of ribonuclease A. Nature 307:329–334.

    Article  CAS  PubMed  Google Scholar 

  30. Grutter, M.G., Hawkes, R.B. and Matthews, B. 1979. Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature 277:667–669.

    Article  CAS  PubMed  Google Scholar 

  31. Hawkes, R., Grutter, M.G. and Schellman, J. 1984. Thermodynamic stability and point mutations of bacteriophage T4 lysozyme. J. Mol. Biol. 175:195–212.

    Article  CAS  PubMed  Google Scholar 

  32. Alber, T. and Wozniak, J.A. 1985. Genetic screen for mutations that increase the thermal stability of phage T4 lysozyme. Proc. Nat. Acad. Sci. USA. 82:747–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hecht, M.H., Sturtevant, J.M. and Sauer, R.T. 1984. Effect of single amino acid replacements on the thermal stability of the amino-terminal domain of phage lambda represser. Proc. Nat. Acad. Sci. USA. 81:5685–5689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shire, S.J., Bock, L., Ogez, J., Builder, S., Kleid, D. and Moore, D.M. 1984. Purification and immunogenicity of fusion VP1 protein of foot and mouth disease virus. Biochem. 23:6474–6480.

    Article  CAS  Google Scholar 

  35. Villafranca, J.E., Howell, E.E., Voet, D.H., Strobel, M.S., Ogden, R.C., Abelson, J.N. and Kraut, J. 1983. Directed mutagenesis of dihydrofolate reductase. Science 222:782–788.

    Article  CAS  PubMed  Google Scholar 

  36. Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J., Blow, D.M., Brick, P., Carter, P., Waye, M.M.Y. and Winter, G. 1985. Hydrogen bonding and biological specificity analyzed by protein engineering. Nature 314:235–238.

    Article  CAS  PubMed  Google Scholar 

  37. Creighton, T.E. and Dyckes, D.F. 1981. Refolding of S-methionyl basic pancreatic trypsin inhibitor. J. Mol. Biol. 146:375–387.

    Article  CAS  PubMed  Google Scholar 

  38. Beasty, A.M. and Matthews, C.R. 1985. Characterization of an early intermediate in the folding of the alpha subunit of tryptophan synthase by hydrogen exchange measurement. Biochem. 24:3547–3553.

    Article  CAS  Google Scholar 

  39. Matthews, C.R., Chrisanti, M.M., Manz, J.T. and Gepner, G.L. 1983. Effect of a single amino acid substitution on the folding of the alpha subunit of tryptophan synthase. Biochem. 22:1445–1452.

    Article  CAS  Google Scholar 

  40. Shortle, D. and Lin, B. 1985. Genetic analysis of Staphylococcal nuclease: identification of three intragenic “global” suppressors of nuclease-minus mutations. Genetics 110:539–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Koshland, D. and Botstein, D. 1982. Evidence for postranslational translocation of beta-lactamase across the bacterial inner membrane. Cell 30:893–902.

    Article  CAS  PubMed  Google Scholar 

  42. Craig, S., Hollecker, M., Creighton, T.E. and Pain, R.H. 1985. Single amino acid substitutions block a late step in the folding of beta-lactamase from Staphylococcus aureus. J. Mol. Biol. 186:681–687.

    Article  Google Scholar 

  43. Berget, P.B. and Poteete, A.R. 1980. Structure and functions of the phage P22 tail protein. J. Virol. 34:234–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sauer, R.T., Krovatin, W., Poteete, A.R. and Berget, P.B. 1982. Phage P22 tail protein: Gene and amino acid sequence. Biochemistry 21:5811–5815.

    Article  CAS  PubMed  Google Scholar 

  45. Goldenberg, D. and King, J. 1981. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. II. Active mutant proteins matured at 30°C. J. Mol. Biol. 145:633–651.

    Article  CAS  PubMed  Google Scholar 

  46. Thomas, G.L., Jr., Li, Y., Fuller, M.T. and King, J. 1982. Structural studies of P22 phage, precursor particles and proteins by laser Raman spectroscopy. 1982. Biochem. 80:3866–3878.

    Article  Google Scholar 

  47. Goldenberg, D. and King, J. 1982. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc. Natl. Acad. Sci. USA. 79:3403–3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldenberg, D.P., Berget, P.B. and King, J. 1982. Maturation of the tail spike endorhamnosidase of Salmonella phage P22. J. Biol. Chem. 257:7864–7871.

    CAS  PubMed  Google Scholar 

  49. Smith, D.H. and King, J. 1981. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. III. Inactive polypeptide chains synthesized at 39°C. J. Mol. Biol. 145:653–676.

    Article  CAS  PubMed  Google Scholar 

  50. Smith, D.H., Berget, P.B. and King, J. 1980. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail-spike protein. I. Fine-structure mapping. Genetics 96:331–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sadler, J.R. and Novick, A. 1965. The properties of represser and the kinetics of its action. J. Mol. Biol. 12:305–327.

    Article  CAS  PubMed  Google Scholar 

  52. Goldenberg, D.P., Smith, D.H. and King, J. 1983. Genetic analysis of the folding pathway for the tail spike protein of phage P22. Proc. Natl. Acad. Sci. USA 80:7060–7064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, M.-H. and King, J. 1984. Single amino acid substitutions influencing the folding pathway of the phage P22 tail spike endorhamnosidase. Proc. Natl. Acad. Sci. USA. 81:6584–6588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harrison, S.C. and Durbin, R. 1985. Is there a single pathway for folding of a polypeptide chain? Proc. Nat. Acad. Sci. USA. 82:4028–4030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rose, G.L., Gierasch, L.M. and Smith, J. 1985. Turns in Peptides and Proteins. Adv. Prot. Chem. 37:1–109.

    CAS  Google Scholar 

  56. Muller, K. and Garel, J-R. 1984. Folding of aspartokinase-homoserine dehydrogenase I is dominated by tertiary interactions. Biochem. 23:655–660.

    Article  CAS  Google Scholar 

  57. Light, A. 1985. Protein solubility, protein modifications and protein folding. Biotechniques 3:298–306.

    CAS  Google Scholar 

  58. Kornfeld, R. and Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54:631–664.

    Article  CAS  PubMed  Google Scholar 

  59. Pless, D.D. and Lennarz, W.J. 1977. Enzymatic conversion of proteins to glycoproteins. Proc. Nat. Acad. Sci. USA. 74:134–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lau, J.T.Y., Welply, J.K., Shenbagamurthy, P., Naider, F. and Lennarz, W.J. 1983. Substrate recognition by oligosaccharide transferase. J. Biol. Chem. 258:15255–15260.

    CAS  PubMed  Google Scholar 

  61. Gibson, R., Schlesinger, S. and Kornfeld, S. 1979. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 254:3600–3607.

    CAS  PubMed  Google Scholar 

  62. Carrell, R.W., Bathurst, I.C. and Brennan, S.D. 1984. The molecular pathology of human alpha-1-antitrypsin. Biochem. Soc. Symp. 49:55–66.

    CAS  PubMed  Google Scholar 

  63. Prockop, D.J., Kivirikko, K.I., Tuderman, L. and Guzman, N.A. 1979. The biosynthesis of collagen and its disorders. New Eng. J. Med. 301:13–23.

    Article  CAS  PubMed  Google Scholar 

  64. Steinman, B., Rao, V.H., Vogel, A., Bruckner, P., Gitzelmann, R. and Byers, P.H. 1984. Cysteine in the triple-helical domain of one allelic product of the alpha1(I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. J. Biol. Chem. 259:1129–1138.

    Google Scholar 

  65. Bonadio, J., Holbrook, K.A., Gelinas, R.E., Jacob, J. and Byers, P.H. 1985. Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J. Biol. Chem. 260:1734–1742.

    CAS  PubMed  Google Scholar 

  66. Freedman, R.B. 1984. Native disulphide bond formation in protein biosynthesis: Evidence for the role of protein disulphide isomerase. Trends Biochem. Sci. 9:438–441.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J. Genetic Analysis of Protein Folding Pathways. Nat Biotechnol 4, 297–303 (1986). https://doi.org/10.1038/nbt0486-297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0486-297

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing