Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex

Abstract

Molecular nitrogen (N2) and carbon monoxide (CO) have the two strongest bonds in chemistry and present significant challenges in developing new transformations that exploit these two abundant feedstocks. At the core of this objective is the discovery of transition-metal compounds that promote the six-electron reductive cleavage of N2 at ambient temperature and pressure and also promote new nitrogen–element bond formation. Here we show that an organometallic hafnium compound induces N2 cleavage on the addition of CO, with a simultaneous assembly of new nitrogen–carbon and carbon–carbon bonds. Subsequent addition of a weak acid liberates oxamide, which demonstrates that an important agrochemical can be synthesized directly from N2 and CO. These studies introduce an alternative paradigm for N2 cleavage and functionalization in which the six-electron reductive cleavage is promoted by both the transition metal and the incoming ligand, CO, used for the new bond formations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structure of the ansa-hafnocene N2 complex 2-N2.
Figure 2: Various N2 cleavage products from the addition of CO to a benzene-d6 solution of 2-N2.
Figure 3: NMR spectra of isotopologues of 2-(N2C2O2)-C1.
Figure 4: Solid-state structure of the (R,R) enantiomer of 2-(N2C2O2)-C2 at 30% probability ellipsoids.
Figure 5: Solid-state structure of 3 at 30% probability ellipsoids.
Figure 6: Proposed mechanism for the carbonylation of 2-N2 with one equivalent of CO to form 3.

Similar content being viewed by others

References

  1. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  2. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production (MIT Press, 2001).

    Google Scholar 

  3. Holladay, J. D., Hu, J., King, D. L. & Wang, Y. An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009).

    Article  CAS  Google Scholar 

  4. Thomas, J. M. & Thomas, W. J. Fischer–Tropsch Catalysis, in Principles and Practice of Heterogeneous Catalysis (VCH, 1996).

  5. Macho, V., Kralik, M. & Komora, L. Progress in commercial and potential industrial processes based on carbon monoxide. Petrol. Coal 39, 6–12 (1997).

    CAS  Google Scholar 

  6. MacLachlan, E. A. & Fryzuk, M. D. Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 25, 1530–1543 (2006).

    Article  CAS  Google Scholar 

  7. Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Fryzuk, M. D., Love, J. B. & Rettig, S. J. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275, 1445–1447 (1997).

    Article  CAS  Google Scholar 

  9. Pun, D., Bradley, C. A., Lobkovsky, E., Keresztes, I. & Chirik, P. J. N2 hydrogenation from activated end-on bis(indenyl) zirconium dinitrogen complexes. J. Am. Chem. Soc. 130, 14046–14047 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Bernskoetter, W. H., Lobkovsky, E. & Chirik, P. J. Kinetics and mechanism of N2 hydrogenation in bis(cyclopentadienyl) zirconium complexes and dinitrogen functionalization by 1,2-addition of a saturated C–H bond. J. Am. Chem. Soc. 127, 14051–14061 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bernskoetter, W. H., Pool, J. A., Lobkovsky, E. & Chirik, P. J. Dinitrogen functionalization with terminal alkynes, amines, and hydrazines promoted by [(η5-C5Me4H)2Zr]2(μ2,η22-N2): observation of side-on and end-on diazenido complexes in the reduction of N2 to hydrazine. J. Am. Chem. Soc. 127, 7901–7911 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bernskoetter, W. H., Olmos, A. V., Lobkovsky, E. & Chirik, P. J. N2 hydrogenation promoted by a side-on bound hafnocene dinitrogen complex. Organometallics 25, 1021–1027 (2006).

    Article  CAS  Google Scholar 

  13. Morello, L., Love, J. B., Patrick, B. O. & Fryzuk, M. D. Carbon–nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J. Am. Chem. Soc. 126, 9480–9481 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bernskoetter, W. H., Olmos, A. V., Pool, J. A., Lobkovsky, E. & Chirik, P. J. N–C bond formation promoted by a hafnocene dinitrogen complex: comparison of zirconium and hafnium congeners. J. Am. Chem. Soc. 128, 10696–10697 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bernskoetter, W. H., Lobkovsky, E. & Chirik, P. J. Nitrogen–carbon bond formation from N2 and CO2 promoted by a hafnocene dinitrogen complex yields a substituted hydrazine. Angew. Chem. Int. Ed. 46, 2858–2861 (2007).

    Article  CAS  Google Scholar 

  16. Knobloch, D. J., Toomey, H. E. & Chirik, P. J. Carboxylation of an ansa-zirconocene dinitrogen complex: regiospecific hydrazine synthesis from N2 and CO2 . J. Am. Chem. Soc. 130, 4248–4249 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hanna, T. E., Keresztes, I., Lobkovsky, E. & Chirik, P. J. Diazene dehydrogenation follows H2 addition to coordinated dinitrogen in an ansa-zirconocene complex. Inorg. Chem. 46, 1675–1683 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hirotsu, M., Fontaine, P. P., Zavalij, P. Y. & Sita, L. R. Extreme N≡N bond elongation and facile N-atom functionalization reactions within two structurally versatile new families of group 4 bimetallic ‘side-on-bridged’ dinitrogen complexes for zirconium and hafnium. J. Am. Chem. Soc. 129, 12690–12692 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Roesky, H., Amin, N., Remmers, G., Gieren, A. & Dederer, B. Formal criss-cross cycloaddition of sulfur trioxide to cyanogen. Angew. Chem. Int. Ed. Engl. 18, 223 (1979).

    Article  Google Scholar 

  20. Laplaza, C. E. & Cummins, C. C. Dinitrogen cleavage by a three-coordinate molybdenum(iii) complex. Science 268, 861–863 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Laplaza, C. E. et al. Dinitrogen cleavage by three-coordinate molybdenum(iii) complexes: mechanistic and structural data. J. Am. Chem. Soc. 118, 8623–8638 (1996).

    Article  CAS  Google Scholar 

  22. Curley, J. J., Cook, T. R., Reece, S. Y., Müller, P. & Cummins, C. C. Shining light on dinitrogen cleavage: structural features, redox chemistry, and photochemistry of the key intermediate bridging dinitrogen complex. J. Am. Chem. Soc. 130, 9394–9405 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. McKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–401 (2004).

    Article  Google Scholar 

  24. Fryzuk, M. D. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 42, 127–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Curley, J. J., Sceats, E. L. & Cummins, C. C. A cycle for organic nitrile synthesis via dinitrogen cleavage. J. Am. Chem. Soc. 128, 14036–14037 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Akagi, F., Matsuo, T. & Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew. Chem. Int. Ed. 46, 8778–8781 (2007).

    Article  CAS  Google Scholar 

  27. Chatt, J., Pearman, A. J. & Richards, R. L. Conversion of dinitrogen in its molybdenum and tungsten complexes into ammonia and possible relevance to nitrogenase reaction. J. Chem. Soc. Dalton Trans. 1852–1860 (1977).

  28. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mori, M. Synthesis of nitrogen heterocycles utilizing molecular nitrogen as a nitrogen source and attempt to use air instead of nitrogen gas. Heterocycles 78, 281–318 (2009).

    Article  CAS  Google Scholar 

  31. Nikiforov, G. B., Vidyaratne, I., Gambarotta, S. & Korobkov, I. Titanium-promoted dinitrogen cleavage, partial hydrogenation, and silylation. Angew. Chem. Int. Ed. 48, 7415–7419 (2009).

    Article  CAS  Google Scholar 

  32. Watanabe, T., Ishida, Y., Matsuo, T. & Kawaguchi, H. Reductive coupling of six carbon monoxides by a ditantalum hydride complex. J. Am. Chem. Soc. 131, 3474–3475.

  33. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotrimerization of carbon monoxide to the deltate dianion by an organometallic uranium complex. Science 311, 829–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Herrmann, H., Fillol, J. L., Wadepohl, H. & Gade, L. H. A zirconium (1-pyridinio)imido complex: facile N–N bond cleavage and N–C bond formation. Organometallics 27, 172–174 (2008).

    Article  CAS  Google Scholar 

  35. Herrmann, H., Fillol, J. L., Wadepohl, H. & Gade, L. H. A zirconium hydrazide as a synthon for a metallanitrene equivalent: atom-by-atom assembly of [EN2]2− units (E = S, Se) by chalcogen-atom transfer in the coordination sphere of a transition metal. Angew. Chem. Int. Ed. 46, 8426–8430 (2007).

    Article  CAS  Google Scholar 

  36. Selby, J. D. et al. New ligand platforms for developing the chemistry of the Ti=N–NR2 functional group and the insertion of alkynes into the N–N bond of a Ti=N–NPh2 ligand. Chem. Commun. 4937–4939 (2007).

  37. Walsh, P. J., Carney, M. J. & Bergman, R. G. Generation, dative ligand trapping, and nitrogen–nitrogen bond cleavage reactions of the first monomeric η1-hydrazido zirconocene complex, (Cp2Zr = NNPh2). A zirconium mediated synthesis of indoles. J. Am. Chem. Soc. 113, 6343–6345 (1991).

    Article  CAS  Google Scholar 

  38. Fagan, F. J. et al. Insertion of carbon monoxide into metal–nitrogen bonds. Synthesis, chemistry, structures, and structural dynamics of bis(pentamethylcyclopentadienyl) organoactinide dialkylamides and η2-carbamoyls. J. Am. Chem. Soc. 103, 2206–2220 (1981).

    Article  CAS  Google Scholar 

  39. Petz, W., Weller, F. & Avtomonov, E. V. Carbonyl insertion into zirconium–nitrogen bonds; synthesis and X-ray structure of a carbene complex composed of [Zr(NMe2)4]2 and three Fe(CO)5 units containing Fe → Zr donor–acceptor interactions. J. Organomet. Chem. 598, 403–408 (2000).

    Article  CAS  Google Scholar 

  40. Duncan, A. P. & Bergman, R. G. Selective transformations of organic compounds by imidozirconocene complexes. Chem. Rec. 2, 431–445 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Director, Office of Basic Energy Sciences, Chemical Sciences Division, of the US Department of Energy (DE-FG02-05ER15659) and the Frasch Foundation administered by the American Chemical Society.

Author information

Authors and Affiliations

Authors

Contributions

D.J.K. and P.J.C. conceived and designed the concepts and experiments. D.J.K. carried out the experiments, E.L. collected and solved the X-ray diffraction data and P.J.C. and D.J.K co-wrote the manuscript.

Corresponding author

Correspondence to Paul J. Chirik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 496 kb)

Supplementary information

Crystallographic data for compound 2-N2 (corrected 8 January 2010) (CIF 24 kb)

Supplementary information

Crystallographic data for compound 2-N2C2O2 (CIF 26 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knobloch, D., Lobkovsky, E. & Chirik, P. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nature Chem 2, 30–35 (2010). https://doi.org/10.1038/nchem.477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing