Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and successes in developing new therapies for hepatitis C

Abstract

Hepatitis C virus (HCV) will continue to be a serious global health threat for many years to come because of the chronic nature of the infection, its high prevalence and the significant morbidity of the resulting disease. Recently, a small number of molecules have produced encouraging results in proof-of-concept clinical trials. At the same time, preclinical evidence is accumulating that development of resistance will eventually limit the efficacy of new drugs. Thus, combinations of multiple agents will be required to treat chronic HCV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structures of inhibitors BILN 2061 and VX-950 and of the NS3 serine protease domain (green) complexed with the central domain of NS4A (red).
Figure 2: Examples of inhibitors of the HCV RNA-dependent RNA polymerase.
Figure 3: The crystal structure of the NS5B RNA-dependent RNA polymerase.

Similar content being viewed by others

References

  1. Wasley, A. & Alter, M. J. Epidemiology of hepatitis C: geographic differences and temporal trends. Semin. Liver Dis. 20, 1–16 (2000).

    Article  CAS  Google Scholar 

  2. Brown, R. S. Jr & Gaglio, P. J. Scope of worldwide hepatitis C problem. Liver Transpl. 9, S10–S13 (2003).

    Article  Google Scholar 

  3. Tomei, L., Altamura, S., Paonessa, G., De Francesco, R. & Migliaccio, G. HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antiviral Chem. Chemother. 16, 225–245 (2005).

    Article  CAS  Google Scholar 

  4. Urbani, A. et al. Substrate specificity of the hepatitis C virus serine protease NS3. J. Biol. Chem. 272, 9204–9209 (1997).

    Article  CAS  Google Scholar 

  5. Yan, Y. et al. Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci. 7, 837–847 (1998).

    Article  CAS  Google Scholar 

  6. Kim, J. L. et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87, 343–355 (1996).

    Article  CAS  Google Scholar 

  7. Love, R. A. et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87, 331–342 (1996).

    Article  CAS  Google Scholar 

  8. Llinas-Brunet, M. et al. Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett. 8, 1713–1718 (1998).

    Article  CAS  Google Scholar 

  9. Steinkuhler, C. et al. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37, 8899–8905 (1998).

    Article  CAS  Google Scholar 

  10. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    Article  ADS  CAS  Google Scholar 

  11. Llinas-Brunet, M. et al. Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease: towards smaller inhibitors. Bioorg. Med. Chem. Lett. 10, 2267–2270 (2000).

    Article  CAS  Google Scholar 

  12. Goudreau, N. et al. NMR structural characterization of peptide inhibitors bound to the Hepatitis C virus NS3 protease: design of a new P2 substituent. J. Med. Chem. 47, 123–132 (2004).

    Article  CAS  Google Scholar 

  13. Tsantrizos, Y. S. et al. Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew. Chem. Int. Ed. Engl. 42, 1356–1360 (2003).

    Article  CAS  Google Scholar 

  14. Hinrichsen, H. et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology 127, 1347–1355 (2004).

    Article  CAS  Google Scholar 

  15. Reiser, M. et al. Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology 41, 832–835 (2005).

    Article  CAS  Google Scholar 

  16. Lu, L. et al. Mutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro. Antimicrob. Agents Chemother. 48, 2260–2266 (2004).

    Article  CAS  Google Scholar 

  17. Lin, C. et al. In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J. Biol. Chem. 279, 17508–17514 (2004).

    Article  CAS  Google Scholar 

  18. Trozzi, C. et al. In vitro selection and characterization of hepatitis C virus serine protease variants resistant to an active-site peptide inhibitor. J. Virol. 77, 3669–3679 (2003).

    Article  CAS  Google Scholar 

  19. Thibeault, D. et al. Sensitivity of NS3 serine proteases from hepatitis C virus genotypes 2 and 3 to the inhibitor BILN 2061. J. Virol. 78, 7352–7359 (2004).

    Article  CAS  Google Scholar 

  20. Chen, S. -H. et al. P1 and P1′ optimization of [3,4]-bicycloproline P2 incorporated tetrapeptidyl α-ketoamide based HCV protease inhibitors. Lett. Drug Des. Disc. 2, 118–123 (2005).

    Article  Google Scholar 

  21. Vertex Pharmaceuticals reports that oral hepatitis C protease inhibitor VX-950 dramatically reduces viral levels in phase Ib clinical study. http://www.vrtx.com/Pressreleases2005/pr051705.html (2005).

  22. Lemon, S. M., Yi, M. & Li, K. Strong reasons make strong actions. The antiviral efficacy of NS3/4A protease inhibitors. Hepatology 41, 671–673 (2005).

    Article  Google Scholar 

  23. Lin, C. et al. In vitro resistance mutations against VX-950 and BILN 2061, two protease inhibitor clinical candidates: single-resistance, cross-resistance and fitness. Hepatology 40 (Suppl. 1), 404A (2004).

    Google Scholar 

  24. Behrens, S. E., Tomei, L. & De Francesco, R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15, 12–22 (1996).

    Article  CAS  Google Scholar 

  25. Ago, H. et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Struct. Fold. Des. 7, 1417–1426 (1999).

    Article  CAS  Google Scholar 

  26. Bressanelli, S. et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl Acad. Sci. USA 96, 13034–13049 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Lesburg, C. A. et al. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nature Struct. Biol. 6, 937–943 (1999).

    Article  CAS  Google Scholar 

  28. Biswal, B. K. et al. Crystal structures of the RNA dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J. Biol. Chem. 280, 18202–18210 (2005).

    Article  CAS  Google Scholar 

  29. Beaulieu, P. L. & Tsantrizos, Y. S. Inhibitors of the HCV NS5B polymerase: new hope for the treatment of hepatitis C infections. Curr. Opin. Investig. Drugs 5, 838–850 (2004).

    CAS  PubMed  Google Scholar 

  30. Afdhal, N. et al. Final phase I/II trial results for NM283, a new polymerase inhibitor for hepatitis C: antiviral efficacy and tolerance in patients with HCV-1 infection, including previous interferon failures. http://www.idenix.com/products/datapres_nm283/AfdhalAASLD04_10-04.pdf (2004).

  31. Standring, D. N. NM283 has potent antiviral activity against chronic hepatitis C virus, genotype 1, in the chimpanzee. http://www.idenix.com/products/datapres_nm283/StandringEASL2004_7-03.pdf (2004).

  32. Carroll, S. et al. Susceptibility of different genotypes of hepatitis C virus to inhibition by nucleoside and nonnucleoside inhibitors. Antiviral Res. 62, A83 (2004).

    Google Scholar 

  33. Migliaccio, G. et al. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J. Biol. Chem. 278, 49164–49170 (2003).

    Article  CAS  Google Scholar 

  34. Olsen, D. B. et al. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob. Agents Chemother. 48, 3944–3953 (2004).

    Article  CAS  Google Scholar 

  35. Afdal, N. et al. Enhanced antiviral efficacy for Valopicitabine (NM283) plus peg-interferon in hepatitis C patients with HCV genotype-1 infection: Results of a phase IIa multicenter trial. http://www.idenix.com/products/datapres_nm283/AfdhalEASL2005_4-05.pdf (2005).

  36. Ludmerer, S. W. et al. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob. Agents Chemother. 49, 2059–2069 (2005).

    Article  CAS  Google Scholar 

  37. Hashimoto, H., Mizutani, K. & Yoshida, A. in WO 00147883 (Japan Tobacco Inc., Published International Patent Application, 2001).

  38. LaPlante, S. R. et al. Binding mode determination of benzimidazole inhibitors of the hepatitis C virus RNA polymerase by a structure and dynamics strategy. Angew Chem. Int. Ed. Engl. 43, 4306–4311 (2004).

    Article  CAS  Google Scholar 

  39. Tomei, L. et al. Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 77, 13225–13231 (2003).

    Article  CAS  Google Scholar 

  40. Di Marco, S. et al. Interdomain communication in hepatitis C virus polymerase abolished by small-molecule inhibitors bound to a novel allosteric site. J. Biol. Chem. published online 13 June 2005.

  41. Lu, H. in WO 2005/000308 (Rigel Pharmaceuticals, USA. Published International Patent Application, 2005).

  42. Poor bioavailability results in insignificant clinical effects for Rigel R803 in phase I/II HCV trial. http://www.rigel.com/rigel/pr_1101094254 (2004).

  43. ViroPharma announces data from HCV-086 proof of concept study. http://phx.corporate-ir.net/phoenix.zhtml?c=92320&p=irol-researchNewsArticle&ID=684145&highlight (2005).

  44. Chan, L. et al. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: tertiary amides. Bioorg. Med. Chem. Lett. 14, 797–800 (2004).

    Article  CAS  Google Scholar 

  45. Chan, L. et al. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: Sulfonamides. Bioorg. Med. Chem. Lett. 14, 793–796 (2004).

    Article  CAS  Google Scholar 

  46. Wang, M. et al. Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition. J. Biol. Chem. 278, 9489–9495 (2003).

    Article  CAS  Google Scholar 

  47. Love, R. A. et al. Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. J. Virol. 77, 7575–7581 (2003).

    Article  CAS  Google Scholar 

  48. Dhanak, D. et al. Identification and biological characterization of heterocyclic inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Biol. Chem. 277, 38322–38327. (2002).

    Article  CAS  Google Scholar 

  49. Gu, B. et al. Arresting initiation of hepatitis C virus RNA synthesis using heterocyclic derivatives. J. Biol. Chem. 278, 16602–16607 (2003).

    Article  CAS  Google Scholar 

  50. Tomei, L. et al. Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides. J. Virol. 78, 938–946 (2004).

    Article  CAS  Google Scholar 

  51. Nguyen, T. T. et al. Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor. Antimicrob. Agents Chemother. 47, 3525–3530 (2003).

    Article  CAS  Google Scholar 

  52. Braasch, D. A. et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14, 1139–1143 (2004).

    Article  CAS  Google Scholar 

  53. Foster, G. R. Past, present, and future hepatitis C treatments. Semin. Liver Dis. 24 (Suppl. 2), 97–104 (2004).

    Article  CAS  Google Scholar 

  54. Kronke, J. et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol. 78, 3436–3446 (2004).

    Article  Google Scholar 

  55. Kapadia, S. B., Brideau-Andersen, A. & Chisari, F. V. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl Acad Sci USA 100, 2014–2018 (2003).

    Article  ADS  CAS  Google Scholar 

  56. Yokota, T. et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep. 4, 602–608 (2003).

    Article  CAS  Google Scholar 

  57. Wilson, J. A. et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl Acad. Sci. USA 100, 2783–2788 (2003).

    Article  ADS  CAS  Google Scholar 

  58. Randall, G., Grakoui, A. & Rice, C. M. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 235–240 (2003).

    Article  ADS  CAS  Google Scholar 

  59. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Med. 9, 347–351 (2003).

    Article  CAS  Google Scholar 

  60. Zender, L. et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl Acad. Sci. USA 100, 7797–7802 (2003).

    Article  ADS  CAS  Google Scholar 

  61. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  ADS  CAS  Google Scholar 

  62. Han, J. et al. Inhibition of HCV replication in vivo by nuclease-resistant siRNAs that are targeted to the liver. Presented at 11th International Symp. Hepatitis C Virus and Related Viruses (Heidelberg, Germany 2004).

  63. Wilson, J. A. & Richardson, C. D. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J. Virol. 79, 7050–8 (2005).

    Article  CAS  Google Scholar 

  64. Benitec announces clinical candidate for treatment of hepatitis C. http://www.benitec.com/PRDownloads/Hepatitis%20C%20Clinical%20Candidate%20050905%20.pdf (2005).

  65. O'Neill, L. A. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 25, 687–693 (2004).

    Article  CAS  Google Scholar 

  66. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  67. Boehme, K. W. & Compton, T. Innate sensing of viruses by toll-like receptors. J. Virol. 78, 7867–7873 (2004).

    Article  CAS  Google Scholar 

  68. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  69. Hahn, Y. S. Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion? Curr. Opin. Immunol. 15, 443–449 (2003).

    Article  CAS  Google Scholar 

  70. McKenna, K., Beignon, A. S. & Bhardwaj, N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol. 79, 17–27 (2005).

    Article  CAS  Google Scholar 

  71. Schetter, C. & Vollmer, J. Toll-like receptors involved in the response to microbial pathogens: development of agonists for toll-like receptor 9. Curr. Opin. Drug Discov. Dev. 7, 204–210 (2004).

    CAS  Google Scholar 

  72. Coley reports results from phase I studies of Actilon for hepatitis C. http://www.coleypharma.com/coley/pr_1105025921 (2005).

  73. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA 100, 6646–6651 (2003).

    Article  ADS  CAS  Google Scholar 

  74. Horsmans, Y. et al. Isatoribine a Toll-like receptor 7 agonist, significantly reduced plasma viral load in a clinical proof-of-concept study in patients with chronic hepatitis C virus. Hepatology 40 (Suppl. 1), 282A (2004).

    Google Scholar 

  75. Anadys Pharmaceuticals announces selection of ANA975 as a development candidate for front-line treatment of chronic hepatitis C. http://phx.corporate-ir.net/phoenix.zhtml?c=148908&p=irol-newsArticle&ID=575761&highlight (2004).

  76. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  ADS  CAS  Google Scholar 

  77. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  ADS  CAS  Google Scholar 

  78. Manoharan, M. RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 8, 570–579 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele De Francesco.

Ethics declarations

Competing interests

G.M. and G.D.F are employees of IRBM P. Angeletti, a fully owned subsidiary of Merck and co.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Francesco, R., Migliaccio, G. Challenges and successes in developing new therapies for hepatitis C. Nature 436, 953–960 (2005). https://doi.org/10.1038/nature04080

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04080

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing