Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The clinical role of genetic polymorphisms in drug-metabolizing enzymes

Abstract

For most drug-metabolizing enzymes (DMEs), the functional consequences of genetic polymorphisms have been examined. Variants leading to reduced or increased enzymatic activity as compared to the wild-type alleles have been identified. This review tries to define potential fields in the therapy of major medical conditions where genotyping (or phenotyping) of genetically polymorphic DMEs might be beneficial for drug safety or therapeutic outcome. The possible application of genotyping is discussed for depression, cardiovascular diseases and thromboembolic disorders, gastric ulcer, malignant diseases and tuberculosis. Some drugs used for relief of these ailments are metabolized with participation of genetically polymorphic DMEs including CYP2D6, CYP2C9, CYP2C19, thiopurine-S-methyltransferase, dihydropyrimidine dehydrogenase, uridine diphosphate glucuronosyltransferase and N-acetyltransferase type 2. Current evidence suggests that taking genetically determined metabolic capacities of DMEs into account has the potential to improve individual risk/benefit relationship. However, more prospective studies with clinical endpoints are needed before the paradigm of ‘personalized medicine’ based on DME variants can be established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kirchheiner J, Sasse J, Roots I, Brockmoller J, Bauer M . The value of pharmacogenetic tests in antidepressive medication therapy. Nervenarzt 2005; 76: 1340–1354.

    Article  CAS  PubMed  Google Scholar 

  2. de Leon J, Armstrong SC, Cozza KL . Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 2006; 47: 75–85.

    Article  PubMed  Google Scholar 

  3. Kalow W . Familial incidence of low pseudocholinesterase level. Lancet 1956; 2: 576–577.

    Article  Google Scholar 

  4. Bauer M, Whybrow PC, Angst J, Versiani M, Moller HJ . World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders part 1: acute and continuation treatment of major depressive disorder. World J Biol Psychiatry 2002; 3: 5–43.

    Article  PubMed  Google Scholar 

  5. Nelson JC . Managing treatment-resistant major depression. J Clin Psychiatry 2003; 64 (Suppl 1): 5–12.

    CAS  PubMed  Google Scholar 

  6. Baumann P, Jonzier Perey M, Koeb L, Küpfer A, Tinguely D, Schopf J . Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1: 102–112.

    Article  CAS  PubMed  Google Scholar 

  7. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A . Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sachse C, Brockmoller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zanger UM, Fischer J, Raimundo S, Stuven T, Evert BO, Schwab M et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 2001; 11: 573–585.

    Article  CAS  PubMed  Google Scholar 

  10. Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Morike K et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26.

    Article  CAS  PubMed  Google Scholar 

  11. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  PubMed  Google Scholar 

  12. Brosen K . Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 2004; 59: 5–12.

    Article  PubMed  Google Scholar 

  13. Lam YW, Gaedigk A, Ereshefsky L, Alfaro CL, Simpson J . CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  14. Laine K, Tybring G, Hartter S, Andersson K, Svensson JO, Widen J et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 2001; 70: 327–335.

    Article  CAS  PubMed  Google Scholar 

  15. Spigset O, Granberg K, Hagg S, Norstrom A, Dahlqvist R . Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997; 52: 129–133.

    Article  CAS  PubMed  Google Scholar 

  16. Carrillo JA, Dahl ML, Svensson JO, Alm C, Rodriguez I, Bertilsson L . Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60: 183–190.

    Article  CAS  PubMed  Google Scholar 

  17. Spigset O, Granberg K, Hagg S, Soderstrom E, Dahlqvist R . Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998; 45: 257–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M et al. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 2001; 21: 330–334.

    Article  CAS  PubMed  Google Scholar 

  19. Fuller RW, Snoddy HD, Krushinski JH, Robertson DW . Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. Neuropharmacology 1992; 31: 997–1000.

    Article  CAS  PubMed  Google Scholar 

  20. Sindrup SH, Brøsen K, Gram LF . Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 1: 288–295.

    Article  Google Scholar 

  21. Kirchheiner J, Henckel HB, Meineke I, Roots I, Brockmöller J . Impact of the CYP2D6 ultra-rapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24: 647–652.

    Article  CAS  PubMed  Google Scholar 

  22. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM . Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–156.

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999; 47: 450–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Veefkind AH, Haffmans PM, Hoencamp E . Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208.

    Article  CAS  PubMed  Google Scholar 

  25. Firkusny L, Gleiter CH . Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gabris G, Baumann P, Janzier-perey MPB, Woggon B, Küpfer A . N-methylation of maprotiline in debrisoquine/mephenytoin-phenotyped depressive patients. Biochemical Pharmacology 1985; 34: 409–410.

    Article  CAS  Google Scholar 

  27. Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 2000; 28: 1222–1230.

    CAS  PubMed  Google Scholar 

  28. Barbhaiya RH, Buch AB, Greene DS . Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. Br J Clin Pharmacol 1996; 42: 573–581.

    Article  CAS  PubMed  Google Scholar 

  29. Dostert P, Benedetti MS, Poggesi I . Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol 1997; 7 (Suppl 1): S23–S35; discussion S71–S73.

    Article  CAS  PubMed  Google Scholar 

  30. Schoerlin MP, Blouin RA, Pfefen JP, Guentert TW . Comparison of the pharmacokinetics of moclobemide in poor and efficient metabolizers of debrisoquine. Acta Psychiatr Scand Suppl 1990; 360: 98–100.

    Article  CAS  PubMed  Google Scholar 

  31. Härtter S, Dingemanse J, Baier D, Ziegler G, Hiemke C . The role of cytochrome P450 2D6 in the metabolism of moclobemide. Eur Neuropsychopharmacol 1996; 6: 225–230.

    Article  PubMed  Google Scholar 

  32. Gram LF, Guentert TW, Grange S, Vistisen K, Brøsen K . Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57: 670–677.

    Article  CAS  PubMed  Google Scholar 

  33. Mihara K, Otani K, Suzuki A, Yasui N, Nakano H, Meng X et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berl) 1997; 133: 95–98.

    Article  CAS  Google Scholar 

  34. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther 2004; 75: 386–393.

    Article  CAS  PubMed  Google Scholar 

  35. Grasmader K, Verwohlt PL, Rietschel M, Dragicevic A, Muller M, Hiemke C et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–336.

    PubMed  Google Scholar 

  36. Lessard E, Yessine M, Hamelin B, O’Hara G, LeBlanc J, Turgeon J . Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–443.

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Chou WH, Blouin RA, Mao Z, Humphries LL, Meek QC et al. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther 1996; 60: 522–534.

    Article  CAS  PubMed  Google Scholar 

  38. Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192.

    Article  CAS  PubMed  Google Scholar 

  39. Lennard MS, Silas JH, Freestone S, Trevethick J . Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1982; 14: 301–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lennard MS, Tucker GT, Silas JH, Freestone S, Ramsay LE, Woods HF . Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 1983; 34: 732–737.

    Article  CAS  PubMed  Google Scholar 

  41. Koytchev R, Alken RG, Vlahov V, Kirkov V, Kaneva R, Thyroff Friesinger U et al. Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur J Clin Pharmacol 1998; 54: 469–474.

    Article  CAS  PubMed  Google Scholar 

  42. McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF . Metoprolol metabolism and debrisoquine oxidation polymorphism--population and family studies. Br J Clin Pharmacol 1985; 20: 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF . Oxidation phenotype – a major determinant of metoprolol metabolism and response. N Engl J Med 1982; 307: 1558–1560.

    Article  CAS  PubMed  Google Scholar 

  44. Kirchheiner J, Heesch C, Bauer S, Meisel C, Seringer A, Goldammer M et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 2004; 76: 302–312.

    Article  CAS  PubMed  Google Scholar 

  45. Neugebauer G, Akpan W, Kaufmann B, Reiff K . Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol 1990; 38: 108–111.

    Article  Google Scholar 

  46. Oldham HG, Clarke SE . In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab Dispos 1997; 25: 970–977.

    CAS  PubMed  Google Scholar 

  47. Zhou HH, Wood AJJ . Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther 1995; 57: 518–524.

    Article  CAS  PubMed  Google Scholar 

  48. Graff DW, Williamson KM, Pieper JA, Carson SW, Adams Jr KF, Cascio WE et al. Effect of fluoxetine on carvedilol pharmacokinetics, CYP2D6 activity, and autonomic balance in heart failure patients. J Clin Pharmacol 2001; 41: 97–106.

    Article  CAS  PubMed  Google Scholar 

  49. Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002; 12: 101–109.

    Article  CAS  PubMed  Google Scholar 

  50. Stearns RA, Chakravarty PK, Chen R, Chiu SH . Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 1995; 23: 207–215.

    CAS  PubMed  Google Scholar 

  51. McCrea JB, Cribb A, Rushmore T, Osborne B, Gillen L, Lo MW et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-31. Clin Pharmacol Ther 1999; 65: 348–352.

    Article  CAS  PubMed  Google Scholar 

  52. Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjoqvist F et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002; 71: 89–98.

    Article  CAS  PubMed  Google Scholar 

  53. Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA . Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 2003; 43: 84–91.

    Article  CAS  PubMed  Google Scholar 

  54. Hallberg P, Karlsson J, Kurland L, Lind L, Kahan T, Malmqvist K et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (S0ILVHIA) trial. J Hypertens 2002; 20: 2089–2093.

    Article  CAS  PubMed  Google Scholar 

  55. Uchida S, Watanabe H, Nishio S, Hashimoto H, Yamazaki K, Hayashi H et al. Altered pharmacokinetics and excessive hypotensive effect of candesartan in a patient with the CYP2C91/3 genotype. Clin Pharmacol Ther 2003; 74: 505–508.

    Article  CAS  PubMed  Google Scholar 

  56. Adcock DM, Koftan C, Crisan D, Kiechle FL . Effect of polymorphisms in the cytochrome P450 CYP2C9 gene on warfarin anticoagulation. Arch Pathol Lab Med 2004; 128: 1360–1363.

    CAS  PubMed  Google Scholar 

  57. Miners JO, Birkett DJ . Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R . Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72: 702–710.

    Article  CAS  PubMed  Google Scholar 

  59. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287: 1690–1698.

    Article  CAS  PubMed  Google Scholar 

  60. Aithal GP, Day CP, Kesteven PJ, Daly AK . Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–719.

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi H, Wilkinson GR, Padrini R, Echizen H . CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin:similarities yet differences. Clin Pharmacol Ther 2004; 75: 376–380.

    Article  CAS  PubMed  Google Scholar 

  62. Morin S, Bodin L, Loriot MA, Thijssen HH, Robert A, Strabach S et al. Pharmacogenetics of acenocoumarol pharmacodynamics. Clin Pharmacol Ther 2004; 75: 403–414.

    Article  CAS  PubMed  Google Scholar 

  63. Schalekamp T, van Geest-Daalderop JH, de Vries-Goldschmeding H, Conemans J, Bernsen MjM, de Boer A . Acenocoumarol stabilization is delayed in CYP2C93 carriers. Clin Pharmacol Ther 2004; 75: 394–402.

    Article  CAS  PubMed  Google Scholar 

  64. Visser LE, van Vliet M, van Schaik RH, Kasbergen AA, De Smet PA, Vulto AG et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004; 14: 27–33.

    Article  CAS  PubMed  Google Scholar 

  65. Visser LE, van Schaik RH, van Vliet M, Trienekens PH, De Smet PA, Vulto AG et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004; 92: 61–66.

    Article  CAS  PubMed  Google Scholar 

  66. Kirchheiner J, Ufer M, Walter EC, Kammerer B, Kahlich R, Meisel C et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 2004; 14: 19–26.

    Article  CAS  PubMed  Google Scholar 

  67. Hummers-Pradier E, Hess S, Adham IM, Papke T, Pieske B, Kochen MM . Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003; 59: 213–219.

    Article  CAS  PubMed  Google Scholar 

  68. Schalekamp T, Oosterhof M, van Meegen E, van Der Meer FJ, Conemans J, Hermans M et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004; 76: 409–417.

    Article  CAS  PubMed  Google Scholar 

  69. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005; 106: 2329–2333.

    Article  CAS  PubMed  Google Scholar 

  70. Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007; 81: 185–193.

    Article  CAS  PubMed  Google Scholar 

  71. Montes R, Ruiz de Gaona E, Martinez-Gonzalez MA, Alberca I, Hermida J . The c.−1639G>A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol 2006; 133: 183–187.

    Article  CAS  PubMed  Google Scholar 

  72. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA . Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994; 46: 594–598.

    CAS  PubMed  Google Scholar 

  73. Andersson T, Holmberg J, Rohss K, Walan A . Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol 1998; 45: 369–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Klotz U, Schwab M, Treiber G . CYP2C19 polymorphism and proton pump inhibitors. Basic Clin Pharmacol Toxicol 2004; 95: 2–8.

    Article  CAS  PubMed  Google Scholar 

  75. Chong E, Ensom MH . Pharmacogenetics of the proton pump inhibitors: a systematic review. Pharmacotherapy 2003; 23: 460–471.

    Article  CAS  PubMed  Google Scholar 

  76. Fuhr U, Jetter A . Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions. Pharmazie 2002; 57: 595–601.

    CAS  PubMed  Google Scholar 

  77. Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Nakagawa K et al. Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics 2001; 11: 341–348.

    Article  CAS  PubMed  Google Scholar 

  78. Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Sugimura H et al. Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther 2001; 69: 158–168.

    Article  CAS  PubMed  Google Scholar 

  79. Furuta T, Ohashi K, Kamata T, Takashima M, Kosuge K, Kawasaki T et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998; 129: 1027–1030.

    Article  CAS  PubMed  Google Scholar 

  80. Furuta T, Shirai N, Sugimoto M, Ohashi K, Ishizaki T . Pharmacogenomics of proton pump inhibitors. Pharmacogenomics 2004; 5: 181–202.

    Article  CAS  PubMed  Google Scholar 

  81. Wedlund PJ . The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61: 174–183.

    Article  CAS  PubMed  Google Scholar 

  82. Schwab M, Schaeffeler E, Klotz U, Treiber G . CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin Pharmacol Ther 2004; 76: 201–209.

    Article  CAS  PubMed  Google Scholar 

  83. Padol S, Yuan Y, Thabane M, Padol IT, Hunt RH . The effect of CYP2C19 polymorphisms on H. pylori eradication rate in dual and triple first-line PPI therapies: a meta-analysis. Am J Gastroenterol 2006; 101: 1467–1475.

    Article  CAS  PubMed  Google Scholar 

  84. Oscarson M . Pharmacogenetics of drug metabolising enzymes: importance for personalised medicine. Clin Chem Lab Med 2003; 41: 573–580.

    Article  CAS  PubMed  Google Scholar 

  85. Collie-Duguid ES, Pritchard SC, Powrie RH, Sludden J, Collier DA, Li T et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999; 9: 37–42.

    Article  CAS  PubMed  Google Scholar 

  86. Weinshilboum RM, Sladek SL . Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980; 32: 651–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 2001; 19: 2293–2301.

    Article  CAS  PubMed  Google Scholar 

  88. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM . Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987; 41: 18–25.

    Article  CAS  PubMed  Google Scholar 

  89. McLeod HL, Coulthard S, Thomas AE, Pritchard SC, King DJ, Richards SM et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999; 105: 696–700.

    Article  CAS  PubMed  Google Scholar 

  90. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997; 126: 608–614.

    Article  CAS  PubMed  Google Scholar 

  91. Schutz E, Gummert J, Mohr F, Oellerich M . Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 1993; 341: 436.

    Article  CAS  PubMed  Google Scholar 

  92. Nagasubramanian R, Innocenti F, Ratain MJ . Pharmacogenetics in cancer treatment. Annu Rev Med 2003; 54: 437–452.

    Article  CAS  PubMed  Google Scholar 

  93. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000; 118: 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  94. Kroplin T, Weyer N, Gutsche S, Iven H . Thiopurine S-methyltransferase activity in human erythrocytes: a new HPLC method using 6-thioguanine as substrate. Eur J Clin Pharmacol 1998; 54: 265–271.

    Article  CAS  PubMed  Google Scholar 

  95. Schwab M, Schaeffeler E, Marx C, Zanger U, Aulitzky W, Eichelbaum M . Shortcoming in the diagnosis of TPMT deficiency in a patient with Crohn's disease using phenotyping only. Gastroenterology 2001; 121: 498–499.

    Article  CAS  PubMed  Google Scholar 

  96. Lennard L . Therapeutic drug monitoring of antimetabolic cytotoxic drugs. Br J Clin Pharmacol 1999; 47: 131–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pazmino PA, Sladek SL, Weinshilboum RM . Thiol S-methylation in uremia: erythrocyte enzyme activities and plasma inhibitors. Clin Pharmacol Ther 1980; 28: 356–367.

    Article  CAS  PubMed  Google Scholar 

  98. Andersen JB, Szumlanski C, Weinshilboum RM, Schmiegelow K . Pharmacokinetics, dose adjustments, and 6-mercaptopurine/methotrexate drug interactions in two patients with thiopurine methyltransferase deficiency. Acta Paediatr 1998; 87: 108–111.

    Article  CAS  PubMed  Google Scholar 

  99. Evans WE . Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 2004; 26: 186–191.

    Article  CAS  PubMed  Google Scholar 

  100. Milan G, Etienne MC . 5-Fluorouracil. In: Grochow LB, Ames MM (Hrsg) (eds.). A Clinical Guide to Chemotherapy Pharmacokinetics and Pharmacodynamics. Williams & Wilkins: Baltimore, 1999 pp 289–300.

    Google Scholar 

  101. Gonzalez FJ, Fernandez-Salguero P . Diagnostic analysis, clinical importance and molecular basis of dihydropyrimidine dehydrogenase deficiency. Trends Pharmacol Sci 1995; 16: 325–327.

    Article  CAS  PubMed  Google Scholar 

  102. Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P . Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 1996; 98: 610–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Miller AB, Hoogstraten B, Staquet M, Winkler A . Reporting results of cancer treatment. Cancer 1981; 47: 207–214.

    Article  CAS  PubMed  Google Scholar 

  104. Frickhofen N, Beck FJ, Jung B, Fuhr HG, Andrasch H, Sigmund M . Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol 2002; 13: 797–801.

    Article  CAS  PubMed  Google Scholar 

  105. Collie-Duguid ES, Etienne MC, Milano G, McLeod HL . Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics 2000; 10: 217–223.

    Article  CAS  PubMed  Google Scholar 

  106. Fleming RA, Milano G, Thyss A, Etienne MC, Renee N, Schneider M et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res 1992; 52: 2899–2902.

    CAS  PubMed  Google Scholar 

  107. Van Kuilenburg AB, Van Lenthe H, Tromp A, Veltman PC, Van Gennip AH . Pitfalls in the diagnosis of patients with a partial dihydropyrimidine dehydrogenase deficiency. Clin Chem 2000; 46: 9–17.

    CAS  PubMed  Google Scholar 

  108. Raida M, Schwabe W, Hausler P, Van Kuilenburg AB, Van Gennip AH, Behnke D et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res 2001; 7: 2832–2839.

    CAS  PubMed  Google Scholar 

  109. Van Kuilenburg AB, Baars JW, Meinsma R, Van Gennip AH . Lethal 5-fluorouracil toxicity associated with a novel mutation in the dihydropyrimidine dehydrogenase gene. Ann Oncol 2003; 14: 341–342.

    Article  CAS  PubMed  Google Scholar 

  110. Kollmannsberger C, Bokemeyer C, Marx C, Fischer J, Honecker F, Schwab M et al. The association between mutations in the dihydropyrimidine dehydrogenase gene and severe toxicity of the treatment with s-fluorouracil: a prospective multicenter study. Onkologie 2001; 25 (Suppl. 6): 101.

    Google Scholar 

  111. van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, De Abreu RA et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 2000; 6: 4705–4712.

    CAS  PubMed  Google Scholar 

  112. Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H et al. UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 2004; 75: 501–515.

    Article  CAS  PubMed  Google Scholar 

  113. Innocenti F, Iyer L, Ratain MJ . Pharmacogenetics of anticancer agents: lessons from amonafide and irinotecan. Drug Metab Dispos 2001; 29: 596–600.

    CAS  PubMed  Google Scholar 

  114. Araki K, Fujita K, Ando Y, Nagashima F, Yamamoto W, Endo H et al. Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Cancer Sci 2006; 97: 1255–1259.

    Article  CAS  PubMed  Google Scholar 

  115. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004; 22: 1382–1388.

    Article  CAS  PubMed  Google Scholar 

  116. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 2000; 60: 6921–6926.

    CAS  PubMed  Google Scholar 

  117. Maitland ML, Vasisht K, Ratain MJ . TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy? Trends Pharmacol Sci 2006; 27: 432–437.

    Article  CAS  PubMed  Google Scholar 

  118. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883–889.

    Article  CAS  PubMed  Google Scholar 

  119. Brockton N, Little J, Sharp L, Cotton SC . N-acetyltransferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol 2000; 151: 846–861.

    Article  CAS  PubMed  Google Scholar 

  120. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 2001; 10: 1239–1248.

    CAS  PubMed  Google Scholar 

  121. Grant DM, Goodfellow GH, Sugamori KS, Durette K . Pharmacogentics of the human arylamine N-actyltransferases. Pharmacology 2000; 61: 204–211.

    Article  CAS  PubMed  Google Scholar 

  122. Tiitinen H et al. Comparison of the isoniazid in activation in Finns and Lapps. Ann Med Int Finn 1968; 57: 161.

    CAS  Google Scholar 

  123. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 1997; 155: 1717–1722.

    Article  CAS  PubMed  Google Scholar 

  124. Kita T, Tanigawara Y, Chikazawa S, Hatanaka H, Sakaeda T, Komada F et al. N-Acetyltransferase 2 genotype correlated with isoniazid acetylation in Japanese tuberculous patients. Biol Pharm Bull 2001; 24: 544–549.

    Article  CAS  PubMed  Google Scholar 

  125. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 2005; 49: 1733–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Clark DWJ . Genetically determine variability in acetylation and oxidation: therapeutic implications. Drugs 1985; 29: 342–375.

    Article  CAS  PubMed  Google Scholar 

  127. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 2000; 4: 256–261.

    CAS  PubMed  Google Scholar 

  128. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883–889.

    Article  CAS  PubMed  Google Scholar 

  129. Donald PR, Sirgel FA, Venter A, Parkin DP, Seifart HI, van de Wal BW et al. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin Infect Dis 2004; 39: 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  130. Kalow W . Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine. Pharmacogenomics J 2006; 6: 162–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Tomalik-Scharte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomalik-Scharte, D., Lazar, A., Fuhr, U. et al. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 8, 4–15 (2008). https://doi.org/10.1038/sj.tpj.6500462

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500462

Keywords

This article is cited by

Search

Quick links