Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The GRM7 gene, early response to risperidone, and schizophrenia: a genome-wide association study and a confirmatory pharmacogenetic analysis

Abstract

The search for biomarkers of response to antipsychotic medications is hindered by difficulties inherent in the topic or related to persistent methodological difficulties, such as high rates of anticipated discontinuation and consequent distortions in the imputation of missing data. Because early response to antipsychotics represents a sufficiently reliable index of the subsequent treatment response in patients with schizophrenia, we undertook a real-world, genome-wide association study (GWAS) with the aim of identifying genetic predictors of response to risperidone after 2 weeks in 86 patients with schizophrenia. Limited to the associations reaching significance in the GWAS, confirmatory analysis relative to risperidone response over 9 months was also designed involving 97 patients (European only) enroled in the CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) genetic substudy. The GWAS revealed a significant association (false discovery rate 0.02) of the single-nucleotide polymorphism rs2133450 inside the GRM7 gene with Emsley’s positive domain derived from the positive and negative syndrome scale (PANSS). Patients with the rs2133450 CC genotype presented poorer improvement in the positive domain over 2 weeks, with odds ratios of 12.68 (95% CI, 3.51–45.76) and 6.95 (95% confidence interval (CI), 2.37–20.37) compared with patients with the AA and AC genotypes, respectively. Compared with A homozygotes, rs2133450 C homozygotes enroled in the CATIE-derived confirmatory analysis showed less improvement in Emsley’s positive, excited and depression domains, positive and general PANSS subtypes, and total PANSS after 9 months of treatment with risperidone. The original GWAS and the CATIE-derived confirmatory analysis support the proposal that the rs2133450 may have translational relevance as a predictor of response to risperidone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bleuler E . Dementia Praecox oder die Gruppe der Schizophrenien. Franz Deuticke: Leipzig, 1911.

    Google Scholar 

  2. Leucht S, Komossa K, Rummel-Kluge C, Corves C, Hunger H, Schmid F et al. A meta-analysis of head-to-head comparisons of second-generation antipsychotics in the treatment of schizophrenia. Am J Psychiatry 2009A; 166: 152–163.

    Article  PubMed  Google Scholar 

  3. Leucht S, Davis JM . Are all antipsychotic drugs the same? Br J Psychiatry 2011; 199: 269–271.

    Article  PubMed  Google Scholar 

  4. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 2013; 382: 951–962.

    Article  CAS  PubMed  Google Scholar 

  5. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  PubMed  Google Scholar 

  6. Kirchheiner J, Fuhr U, Brockmöller J . Pharmacogenetics-based therapeutic recommendations—ready for clinical practice? Nat Rev Drug Discov 2005; 4: 639–647.

    Article  CAS  PubMed  Google Scholar 

  7. Stingl JC, Brockmöller J, Viviani R . Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013; 18: 273–287.

    Article  CAS  PubMed  Google Scholar 

  8. Prata D, Mechelli A, Kapur S . Clinically meaningful biomarkers for psychosis: a systematic and quantitative review. Neurosci Biobehav Rev 2014; 45C: 134–141.

    Article  Google Scholar 

  9. Ascher-Svanum H, Nyhuis AW, Faries DE, Kinon BJ, Baker RW, Shekhar A . Clinical, functional, and economic ramifications of early nonresponse to antipsychotics in the naturalistic treatment of schizophrenia. Schizophr Bull 2008; 34: 1163–1171.

    Article  PubMed  Google Scholar 

  10. Correll CU, Malhotra AK, Kaushik S, McMeniman M, Kane JM . Early prediction of antipsychotic response in schizophrenia. Am J Psychiatry 2003; 160: 2063–2065.

    Article  PubMed  Google Scholar 

  11. Kinon BJ, Chen L, Ascher-Svanum H, Stauffer VL, Kollack-Walker S, Sniadecki JL et al. Predicting response to atypical antipsychotics based on early response in the treatment of schizophrenia. Schizophr Res 2008; 102: 230–240.

    Article  PubMed  Google Scholar 

  12. Kinon BJ, Chen L, Ascher-Svanum H, Stauffer VL, Kollack-Walker S, Zhou W et al. Early response to antipsychotic drug therapy as a clinical marker of subsequent response in the treatment of schizophrenia. Neuropsychopharmacology 2010; 35: 581–590.

    Article  CAS  PubMed  Google Scholar 

  13. Kinon BJ, Chen L, Stauffer VL, Sniadecki J, Ascher-Svanum H, Kollack-Walker S et al. Early onset of antipsychotic action in schizophrenia: evaluating the possibility of shorter acute efficacy trials. J Clin Psychopharmacol 2010; 30: 286–289.

    Article  CAS  PubMed  Google Scholar 

  14. Levine SZ, Leucht S . Elaboration on the early-onset hypothesis of antipsychotic drug action: treatment response trajectories. Biol Psychiatry 2010; 68: 86–92.

    Article  CAS  PubMed  Google Scholar 

  15. Leucht S, Busch R, Kissling W, Kane JM . Early prediction of antipsychotic nonresponse among patients with schizophrenia. J Clin Psychiatry 2007; 68: 352–360.

    Article  CAS  PubMed  Google Scholar 

  16. Leucht S, Kissling W, Davis JM . How to read and understand and use systematic reviews and meta-analyses. Acta Psychiatr Scand 2009; 119: 443–450.

    Article  CAS  PubMed  Google Scholar 

  17. Leucht S, Zhao J . Early improvement as a predictor of treatment response and remission in patients with schizophrenia: a pooled, post-hoc analysis from the asenapine development program. J Psychopharmacol 2014; 28: 387–394.

    Article  PubMed  Google Scholar 

  18. O'Gorman C, Kapur S, Kolluri S, Kane J . Early improvement on antipsychotic treatment as a predictor of subsequent response in schizophrenia: analyses from ziprasidone clinical studies. Hum Psychopharmacol Clin Exp 2011; 26: 282–290.

    Article  CAS  Google Scholar 

  19. Rabinowitz J, Werbeloff N, Caers I, Mandel FS, Stauffer V, Ménard F et al. Determinants of antipsychotic response in schizophrenia: implications for practice and future clinical trials. J Clin Psychiatry 2014; 75: e308–e316.

    Article  CAS  PubMed  Google Scholar 

  20. Ruberg SJ, Chen L, Stauffer V, Ascher-Svanum H, Kollack-Walker S, Conley RR et al. Identification of early changes in specific symptoms that predict longer-term response to atypical antipsychotics in the treatment of patients with schizophrenia. BMC Psychiatry 2011; 11: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schennach-Wolff R, Meyer S, Seemüller F, Jäger M, Schmauss M, Laux G et al. Influencing factors and predictors of early improvement in the acute treatment of schizophrenia and schizophrenia spectrum disorder. J Psychiatr Res 2011; 45: 1639–1647.

    Article  PubMed  Google Scholar 

  22. Stauffer VL, Case M, Kinon BJ, Conley R, Ascher-Svanum H, Kollack-Walker S et al. Early response to antipsychotic therapy as a clinical marker of subsequent response in the treatment of patients with first-episode psychosis. Psychiatry Res 2011; 187: 42–48.

    Article  PubMed  Google Scholar 

  23. Barnes TR . Schizophrenia Consensus Group of British Association for Psychopharmacology. Evidence-based guidelines for the pharmacological treatment of schizophrenia: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2011; 25: 567–620.

    Article  CAS  PubMed  Google Scholar 

  24. Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Möller HJ . WFSBP Task Force on Treatment Guidelines for Schizophrenia. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, Part 1: acute treatment of schizophrenia. World J Biol Psychiatry 2005; 6: 132–191.

    Article  PubMed  Google Scholar 

  25. Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO et alAmerican Psychiatric Association Steering Committee on Practice Guidelines. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 2004; 161: 1–56.

    Article  PubMed  Google Scholar 

  26. Agid O, Kapur S, Arenovich T, Zipursky RB . Delayed-onset hypothesis of antipsychotic action: a hypothesis tested and rejected. Arch Gen Psychiatry 2003; 60: 1228–1235.

    Article  CAS  PubMed  Google Scholar 

  27. Kapur S, Arenovich T, Agid O, Zipursky R, Lindborg S, Jones B . Evidence for onset of antipsychotic effects within the first 24 hours of treatment. Am J Psychiatry 2005; 162: 939–946.

    Article  PubMed  Google Scholar 

  28. Leucht S, Busch R, Hamann J, Kissling W, Kane JM . Early-onset hypothesis of antipsychotic drug action: a hypothesis tested, confirmed and extended. Biol Psychiatry 2005; 57: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  29. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  PubMed  Google Scholar 

  30. Arranz MJ, Rivera M, Munro JC . Pharmacogenetics of response to antipsychotics in patients with schizophrenia. CNS Drugs 2011; 25: 933–969.

    Article  CAS  PubMed  Google Scholar 

  31. Llerena A, Berecz R, Peñas-Lledó E, Süveges A, Fariñas H . Pharmacogenetics of clinical response to risperidone. Pharmacogenomics 2013; 14: 177–194.

    Article  CAS  PubMed  Google Scholar 

  32. Xu Q, Wu X, Xiong Y, Xing Q, He L, Qin S . Pharmacogenomics can improve antipsychotic treatment in schizophrenia. Front Med 2013; 7: 180–190.

    Article  PubMed  Google Scholar 

  33. Zhang JP, Malhotra AK . Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 2011; 7: 9–37.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miyamoto S, Duncan GE, Marx CE, Lieberman JA . Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005; 10: 79–104.

    Article  CAS  PubMed  Google Scholar 

  35. Kakihara S, Yoshimura R, Shinkai K, Matsumoto C, Goto M, Kaji K et al. Prediction of response to risperidone treatment with respect to plasma concentrations of risperidone, catecholamine metabolites, and polymorphism of cytochrome P450 2D6. Int Clin Psychopharmacol 2005; 20: 71–78.

    Article  PubMed  Google Scholar 

  36. Kastelic M, Koprivsek J, Plesnicar BK, Serretti A, Mandelli L, Locatelli I et al. MDR1 gene polymorphisms and response to acute risperidone treatment. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 387–392.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki A, Mihara K, Kondo T, Tanaka O, Nagashima U, Otani K et al. The relationship between dopamine D2 receptor polymorphism at the Taq1 A locus and therapeutic response tonemonapride, a selective dopamine antagonist, in schizophrenic patients. Pharmacogenetics 2000; 10: 335–341.

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki A, Kondo T, Mihara K, Yasui-Furukori N, Otani K, Furukori H et al. Association between TaqI A dopamine D2 receptor polymorphism and therapeutic response to bromperidol: a preliminary report. Eur Arch Psychiatry Clin Neurosci 2001; 251: 57–59.

    Article  CAS  PubMed  Google Scholar 

  39. Russo M, Levine SZ, Demjaha A, Di Forti M, Bonaccorso S, Fearon P et al. Association between symptom dimensions and categorical diagnoses of psychosis: a cross-sectional and longitudinal investigation. Schizophr Bull 2014; 40: 111–119.

    Article  PubMed  Google Scholar 

  40. Marques TR, Levine SZ, Reichenberg A, Kahn R, Derks EM, Fleischhacker WW et al. How antipsychotics impact the different dimensions of Schizophrenia: a test of competing hypotheses. Eur Neuropsychopharmacol 2014; 24: 1279–1288.

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magri C, Sacchetti E, Traversa M, Valsecchi P, Gardella R, Bonvicini C et al. New copy number variations in schizophrenia. PLoS ONE 2010; 5: e13422.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guy W . The Clinical Global Impression Scale. ECDEU Assessment Manual for Psychopharmacology-Revised. DHHS Publication No. ADM 91-338. US Department of Health and Human Services: Rockville, MD, 1976, pp 218–222.

  44. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR). American Psychiatric Association: Washington, DC, 2000.

  45. Sacchetti E, Bocchio-Chiavetto L, Valsecchi P, Scassellati C, Pasqualetti P, Bonvicini C et al. G308A tumor necrosis factor alpha functional polymorphism and schizophrenia risk: meta-analysis plus association study. Brain Behav Immun 2007; 21: 450–457.

    Article  CAS  PubMed  Google Scholar 

  46. First M, Spitzer R, Gibbon M, Williams J . Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). American Psychiatric Press: Washington, DC, 1996.

    Google Scholar 

  47. Kay SR, Fiszbein A, Opler LA . The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull 1987; 132: 261–276.

    Article  Google Scholar 

  48. Lindenmayer JP, Kay SR, Opler L . Positive and negative subtypes in acute schizophrenia. Compr Psychiatry 1984; 25: 455–464.

    Article  CAS  PubMed  Google Scholar 

  49. Opler LA, Kay SR, Rosado V, Lindenmayer JP . Positive and negative syndromes in chronic schizophrenic inpatients. J Nerv Ment Dis 1984; 172: 317–325.

    Article  CAS  PubMed  Google Scholar 

  50. Osterberg L, Blaschke T . Adherence to medication. N Engl J Med 2005; 353: 487–497.

    Article  CAS  PubMed  Google Scholar 

  51. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. Fifth Edition (DSM-V). American Psychiatric Association: Arlington, VA, 2013.

  52. Emsley R, Rabinowitz J, Torreman M . RIS-INT-35 Early Psychosis Global Working Group. The factor structure for the Positive and Negative Syndrome Scale (PANSS) in recent-onset psychosis. Schizophr Res 2003; 61: 47–57.

    Article  PubMed  Google Scholar 

  53. Obermeier M, Mayr A, Schennach-Wolff R, Seemüller F, Möller HJ, Riedel M . Should the PANSS be rescaled? Schizophr Bull 2010; 36: 455–460.

    Article  PubMed  Google Scholar 

  54. Leucht S, Davis JM, Engel RR, Kane JM, Wagenpfeil S . Defining 'response' in antipsychotic drug trials: recommendations for the use of scale-derived cutoffs. Neuropsychopharmacology 2007; 32: 1903–1910.

    Article  CAS  PubMed  Google Scholar 

  55. Leucht S, Kissling W, Davis JM . The PANSS should be rescaled. Schizophr Bull 2010; 36: 461–462.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Browning SR, Browning BL . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 2007; 81: 1084–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faul F, Erdfelder E, Buchner A, Lang AG . Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149–1160.

    Article  PubMed  Google Scholar 

  59. R_Core_Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2014.

  60. Bates D, Maechler M, Bolker B, Walker S . Linear Mixed-Effects Models Using Eigen and S4. R package version 2014; 1: 1–6.

    Google Scholar 

  61. Kuznetsova A, Brockhoff PB, Christensen RHB. ImerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (lmer Objects of lme4 Package). R package version 2.0-6, 2014.

  62. Sacchetti E, Vita A . Poor adherence to antipsychotic medications in people with schizophrenia: diffusion, consequences and contributing factors. In: Sacchetti E, Vita A, Siracusano A, Fleischhacker W (eds). Adherence to Antipsychotics in Schizophrenia. Springer: Milan, 2014 pp 1–84.

    Chapter  Google Scholar 

  63. Nasrallah HA, Silva R, Phillips D, Cucchiaro J, Hsu J, Xu J et al. Lurasidone for the treatment of acutely psychotic patients with schizophrenia: a 6-week, randomized, placebo-controlled study. J Psychiatr Res 2013; 47: 670–677.

    Article  PubMed  Google Scholar 

  64. Ogasa M, Kimura T, Nakamura M, Guarino J . Lurasidone in the treatment of schizophrenia: a 6-week, placebo-controlled study. Psychopharmacology (Berl) 2013; 225: 519–530.

    Article  CAS  Google Scholar 

  65. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  66. Cherlyn SY, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K . Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 2010; 34: 958–977.

    Article  CAS  PubMed  Google Scholar 

  67. Shibata H, Tani A, Chikuhara T, Kikuta R, Sakai M, Ninomiya H et al. Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res 2009; 167: 88–96.

    Article  CAS  PubMed  Google Scholar 

  68. Ohtsuki T, Koga M, Ishiguro H, Horiuchi Y, Arai M, Niizato K et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr Res 2008; 101: 9–16.

    Article  PubMed  Google Scholar 

  69. Ganda C, Schwab SG, Amir N, Heriani H, Irmansyah I, Kusumawardhani A et al. A family-based association study of DNA sequence variants in GRM7 with schizophrenia in an Indonesian population. Int J Neuropsychopharmacol 2009; 12: 1283–1289.

    Article  CAS  PubMed  Google Scholar 

  70. Ghose GH, Gleason K, Shukla A . Altered expression of metabotropic glutamate receptor proteins in frontostriatal regions in schizophrenia. Schizophr Bull 2011; 37: 190.

    Google Scholar 

  71. Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP et al. Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis. Eur J Hum Genet 2009; 17: 946–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McClay JL, Adkins DE, Aberg K, Stroup S, Perkins DO, Vladimirov VI et al. Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry 2011; 16: 76–85.

    Article  CAS  PubMed  Google Scholar 

  73. Levine SZ, Leucht S . Delayed- and early-onset hypotheses of antipsychotic drug action in the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 2012; 22: 812–817.

    Article  PubMed  Google Scholar 

  74. Leucht S, Arbter D, Engel RR, Kissling W, Davis JM . How effective are second-generation antipsychotic drugs? A meta-analysis of placebo-controlled trials. Mol Psychiatry 2009; 14: 429–447.

    Article  CAS  PubMed  Google Scholar 

  75. Case M, Stauffer VL, Ascher-Svanum H, Conley R, Kapur S, Kane JM et al. The heterogeneity of antipsychotic response in the treatment of schizophrenia. Psychol Med 2011; 41: 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  76. Levine SZ, Leucht S . Early symptom response to antipsychotic medication as a marker of subsequent symptom change: an eighteen-month follow-up study of recent episode schizophrenia. Schizophr Res 2012; 141: 168–172.

    Article  PubMed  Google Scholar 

  77. Marques TR, Arenovich T, Agid O, Sajeev G, Muthén B, Chen L et al. The different trajectories of antipsychotic response: antipsychotics versus placebo. Psychol Med 2011; 41: 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  78. Stauffer V, Case M, Kollack-Walker S, Ascher-Svanum H, Ball T, Kapur S et al. Trajectories of response to treatment with atypical antipsychotic medication in patients with schizophrenia pooled from 6 double-blind, randomized clinical trials. Schizophr Res 2011; 130: 11–19.

    Article  PubMed  Google Scholar 

  79. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009; 34: 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  80. Pa1ucha-Poniewiera A, Kłodzińska A, Stachowicz K, Tokarski K, Hess G, Schann S et al. Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology 2008; 55: 517–524.

    Article  Google Scholar 

  81. Wierońska JM, Stachowicz K, Acher F, Lech T, Pilc A . Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology 2012; 220: 481–494.

    Article  PubMed  Google Scholar 

  82. De Rover M, Meye FJ, Ramakers GMJ . Presynaptic metabotropic glutamate receptors regulate glutamatergic input to dopamine neurons in the ventral tegmental area. Neuroscience 2008; 154: 1318–1323.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this study was partially provided by Project No. 153 of the Health Authority of Regione Lombardia. The CATIE-derived confirmatory analysis was possible thanks to the National Institute of Mental Health (NIMH), which provided access to the clinical and genetic data of the CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) study to Massimo Gennarelli. The principal investigators of the CATIE trial were Jeffrey A Lieberman, MD, T Scott Stroup, MD, MPH and Joseph P McEvoy, MD. The CATIE trial was funded by a grant from the NIMH (N01 MH900001) along with MH074027 (principal investigator PF Sullivan). Genotyping was funded by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Sacchetti.

Ethics declarations

Competing interests

In the past 3 years, ES has received funding for research, advisory board membership and sponsored lectures from the following private companies: Angelini, Chiesi, Content Rd Net srl, EDRA LSWR, Eli Lilly, Health and Publishing Services srl, Janssen-Cilag, Lundbeck, McCann, Otsuka, Pfizer, Roche, Servier, Stroder, Sunovion, Takeda and Valeas. He is not a shareholder in any of these corporations. In the past 3 years, AV has received funding for research, advisory board membership and sponsored lectures from Astra Zeneca Pharmaceuticals, Eli Lilly, Janssen-Cilag, Lundbeck, Pfizer, Otsuka, Sanofi and Stroder. He is not a shareholder in any of these corporations. PV has received funding for research and sponsored lectures from Abbott, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, Innova Pharma, Janssen-Cilag, Lundbeck, Otsuka, Pfizer and Wyeth Lederle. He is not a shareholder in any of these corporations. The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, E., Magri, C., Minelli, A. et al. The GRM7 gene, early response to risperidone, and schizophrenia: a genome-wide association study and a confirmatory pharmacogenetic analysis. Pharmacogenomics J 17, 146–154 (2017). https://doi.org/10.1038/tpj.2015.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.90

This article is cited by

Search

Quick links