Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation

Abstract

To determine the role of CYP450 copy number variation (CNV) beyond CYP2D6, 11 CYP450 genes were interrogated by multiplex ligation-dependent probe amplification and quantitative PCR in 542 African-American, Asian, Caucasian, Hispanic and Ashkenazi Jewish individuals. The CYP2A6, CYP2B6 and CYP2E1 combined deletion/duplication allele frequencies ranged from 2 to 10% in these populations. High-resolution microarray-based comparative genomic hybridization (aCGH) localized CYP2A6, CYP2B6 and CYP2E1 breakpoints to directly oriented low-copy repeats. Sequencing localized the CYP2B6 breakpoint to a 529-bp intron 4 region with high homology to CYP2B7P1, resulting in the CYP2B6*29 partial deletion allele and the reciprocal, and novel, CYP2B6/2B7P1 duplicated fusion allele (CYP2B6*30). Together, these data identified novel CYP450 CNV alleles (CYP2B6*30 and CYP2E1*1Cx2) and indicate that common CYP450 CNV formation is likely mediated by non-allelic homologous recombination resulting in both full gene and gene-fusion copy number imbalances. Detection of these CNVs should be considered when interrogating these genes for pharmacogenetic drug selection and dosing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006; 38: 24–26.

    Article  CAS  PubMed  Google Scholar 

  2. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 2008; 40: 1107–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  PubMed  Google Scholar 

  5. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

    Article  CAS  PubMed  Google Scholar 

  6. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 2005; 77: 78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinto D, Marshall C, Feuk L, Scherer SW . Copy-number variation in control population cohorts. Hum Mol Genet 2007; 16 Spec No. 2: R168–R173.

    Article  PubMed  Google Scholar 

  8. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y et al. Origins and functional impact of copy number variation in the human genome. Nature 2010; 464: 704–712.

    Article  CAS  PubMed  Google Scholar 

  9. Johansson AC, Feuk L . Characterization of copy number-stable regions in the human genome. Hum Mutat 2011; 32: 947–955.

    Article  CAS  PubMed  Google Scholar 

  10. Feuk L, Carson AR, Scherer SW . Structural variation in the human genome. Nat Rev Genet 2006; 7: 85–97.

    Article  CAS  PubMed  Google Scholar 

  11. Hastings PJ, Lupski JR, Rosenberg SM, Ira G . Mechanisms of change in gene copy number. Nat Rev Genet 2009; 10: 551–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR . The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 2009; 41: 849–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hebbring SJ, Adjei AA, Baer JL, Jenkins GD, Zhang J, Cunningham JM et al. Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet 2007; 16: 463–470.

    Article  CAS  PubMed  Google Scholar 

  14. Huang RS, Chen P, Wisel S, Duan S, Zhang W, Cook EH et al. Population-specific GSTM1 copy number variation. Hum Mol Genet 2009; 18: 366–372.

    Article  CAS  PubMed  Google Scholar 

  15. Gaedigk A, Twist GP, Leeder JS . CYP2D6, SULT1A1 and UGT2B17 copy number variation: quantitative detection by multiplex PCR. Pharmacogenomics 2012; 13: 91–111.

    Article  CAS  PubMed  Google Scholar 

  16. McGraw J, Waller D . Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 2012; 8: 371–382.

    Article  CAS  PubMed  Google Scholar 

  17. He Y, Hoskins JM, McLeod HL . Copy number variants in pharmacogenetic genes. Trends Mol Med 2011; 17: 244–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramamoorthy A, Skaar TC . Gene copy number variations: it is important to determine which allele is affected. Pharmacogenomics 2011; 12: 299–301.

    Article  PubMed  Google Scholar 

  19. Gaedigk A, Hernandez J, Garcia-Solaesa V, Sanchez S, Isidoro-Garcia M . Detection and characterization of the CYP2D6*9 × 2 gene duplication in two Spanish populations: resolution of AmpliChip CYP450 test no-calls. Pharmacogenomics 2011; 12: 1617–1622.

    Article  CAS  PubMed  Google Scholar 

  20. Ramamoorthy A, Flockhart DA, Hosono N, Kubo M, Nakamura Y, Skaar TC . Differential quantification of CYP2D6 gene copy number by four different quantitative real-time PCR assays. Pharmacogenet Genomics 2010; 20: 451–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaedigk A, Jaime LK, Bertino JS, Berard A, Pratt VM, Bradfordand LD et al. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants. Front Pharmacol 2010; 1: 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukami T, Nakajima M, Yamanaka H, Fukushima Y, McLeod HL, Yokoi T . A novel duplication type of CYP2A6 gene in African-American population. Drug Metab Dispos 2007; 35: 515–520.

    Article  CAS  PubMed  Google Scholar 

  23. Nakajima M, Yoshida R, Fukami T, McLeod HL, Yokoi T . Novel human CYP2A6 alleles confound gene deletion analysis. FEBS Lett 2004; 569: 75–81.

    Article  CAS  PubMed  Google Scholar 

  24. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman-Sundberg M . Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–11829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sachse C, Brockmoller J, Hildebrand M, Muller K, Roots I . Correctness of prediction of the CYP2D6 phenotype confirmed by genotyping 47 intermediate and poor metabolizers of debrisoquine. Pharmacogenetics 1998; 8: 181–185.

    Article  CAS  PubMed  Google Scholar 

  26. Ishiguro A, Kubota T, Ishikawa H, Iga T . Metabolic activity of dextromethorphan O-demethylation in healthy Japanese volunteers carrying duplicated CYP2D6 genes: duplicated allele of CYP2D6*10 does not increase CYP2D6 metabolic activity. Clin Chim Acta 2004; 344: 201–204.

    Article  CAS  PubMed  Google Scholar 

  27. Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ . CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics 2009; 10: 1243–1255.

    Article  CAS  PubMed  Google Scholar 

  28. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ . Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics 2010; 11: 781–791.

    Article  CAS  PubMed  Google Scholar 

  29. Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA . Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J, e-pub ahead of print, 10 April 2012.

  30. Scott SA, Edelmann L, Kornreich R, Erazo M, Desnick RJ . CYP2C9, CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish population. Pharmacogenomics 2007; 8: 721–730.

    Article  CAS  PubMed  Google Scholar 

  31. Scott SA, Edelmann L, Kornreich R, Desnick RJ . Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 2008; 82: 495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scott SA, Martis S, Peter I, Kasai Y, Kornreich R, Desnick RJ . Identification of CYP2C19*4B: pharmacogenetic implications for drug metabolism including clopidogrel responsiveness. Pharmacogenomics J 2012; 12: 297–305.

    Article  CAS  PubMed  Google Scholar 

  33. Scott SA, Cohen N, Brandt T, Toruner G, Desnick RJ, Edelmann L . Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet Med 2010; 12: 85–92.

    Article  CAS  PubMed  Google Scholar 

  34. Scott SA, Cohen N, Brandt T, Warburton PE, Edelmann L . Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome. Hum Mol Genet 2010; 19: 3383–3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haberl M, Anwald B, Klein K, Weil R, Fuss C, Gepdiremen A et al. Three haplotypes associated with CYP2A6 phenotypes in Caucasians. Pharmacogenet Genomics 2005; 15: 609–624.

    Article  CAS  PubMed  Google Scholar 

  36. Rotger M, Saumoy M, Zhang K, Flepp M, Sahli R, Decosterd L et al. Partial deletion of CYP2B6 owing to unequal crossover with CYP2B7. Pharmacogenet Genomics 2007; 17: 885–890.

    Article  CAS  PubMed  Google Scholar 

  37. Ingelman-Sundberg M, Oscarson M, Daly AK, Garte S, Nebert DW . Human cytochrome P-450 (CYP) genes: a web page for the nomenclature of alleles. Cancer Epidemiol Biomarkers Prev 2001; 10: 1307–1308.

    CAS  PubMed  Google Scholar 

  38. Sim SC, Ingelman-Sundberg M . The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 2010; 4: 278–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu Y, Hakkola J, Oscarson M, Ingelman-Sundberg M . Structural and functional characterization of the 5′-flanking region of the rat and human cytochrome P450 2E1 genes: identification of a polymorphic repeat in the human gene. Biochem Biophys Res Commun 1999; 263: 286–293.

    Article  CAS  PubMed  Google Scholar 

  40. Tyndale RF, Sellers EM . Variable CYP2A6-mediated nicotine metabolism alters smoking behavior and risk. Drug Metab Dispos 2001; 29 (4 Pt 2): 548–552.

    CAS  PubMed  Google Scholar 

  41. Kamataki T, Fujieda M, Kiyotani K, Iwano S, Kunitoh H . Genetic polymorphism of CYP2A6 as one of the potential determinants of tobacco-related cancer risk. Biochem Biophys Res Commun 2005; 338: 306–310.

    Article  CAS  PubMed  Google Scholar 

  42. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-Sundberg M . Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment. Hum Genet 2010; 127: 1–17.

    Article  CAS  PubMed  Google Scholar 

  44. Oscarson M, McLellan RA, Gullsten H, Yue QY, Lang MA, Bernal ML et al. Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population. FEBS Lett 1999; 448: 105–110.

    Article  CAS  PubMed  Google Scholar 

  45. van Binsbergen E . Origins and breakpoint analyses of copy number variations: up close and personal. Cytogenet Genome Res 2011; 135: 271–276.

    Article  CAS  PubMed  Google Scholar 

  46. Mwenifumbo JC, Zhou Q, Benowitz NL, Sellers EM, Tyndale RF . New CYP2A6 gene deletion and conversion variants in a population of Black African descent. Pharmacogenomics 2010; 11: 189–198.

    Article  CAS  PubMed  Google Scholar 

  47. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U et al. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001; 11: 399–415.

    Article  CAS  PubMed  Google Scholar 

  48. Klein K, Lang T, Saussele T, Barbosa-Sicard E, Schunck WH, Eichelbaum M et al. Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genomics 2005; 15: 861–873.

    Article  CAS  PubMed  Google Scholar 

  49. Gatanaga H, Hayashida T, Tsuchiya K, Yoshino M, Kuwahara T, Tsukada H et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis 2007; 45: 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  50. Batzer MA, Deininger PL . Alu repeats and human genomic diversity. Nat Rev Genet 2002; 3: 370–379.

    Article  CAS  PubMed  Google Scholar 

  51. Hesse LM, He P, Krishnaswamy S, Hao Q, Hogan K, von Moltke LL et al. Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 2004; 14: 225–238.

    Article  CAS  PubMed  Google Scholar 

  52. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13: 619–626.

    Article  CAS  PubMed  Google Scholar 

  53. Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Decosterd L et al. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther 2007; 81: 557–566.

    Article  CAS  PubMed  Google Scholar 

  54. Grove J, Brown AS, Daly AK, Bassendine MF, James OF, Day CP . The RsaI polymorphism of CYP2E1 and susceptibility to alcoholic liver disease in Caucasians: effect on age of presentation and dependence on alcohol dehydrogenase genotype. Pharmacogenetics 1998; 8: 335–342.

    Article  CAS  PubMed  Google Scholar 

  55. Iwahashi K, Ameno S, Ameno K, Okada N, Kinoshita H, Sakae Y et al. Relationship between alcoholism and CYP2E1 C/D polymorphism. Neuropsychobiology 1998; 38: 218–221.

    Article  CAS  PubMed  Google Scholar 

  56. McCarver DG, Byun R, Hines RN, Hichme M, Wegenek W . A genetic polymorphism in the regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. Toxicol Appl Pharmacol 1998; 152: 276–281.

    Article  CAS  PubMed  Google Scholar 

  57. Howard LA, Ahluwalia JS, Lin SK, Sellers EM, Tyndale RF . CYP2E1*1D regulatory polymorphism: association with alcohol and nicotine dependence. Pharmacogenetics 2003; 13: 321–328.

    Article  CAS  PubMed  Google Scholar 

  58. Khan AJ, Ruwali M, Choudhuri G, Mathur N, Husain Q, Parmar D . Polymorphism in cytochrome P450 2E1 and interaction with other genetic risk factors and susceptibility to alcoholic liver cirrhosis. Mutat Res 2009; 664: 55–63.

    Article  CAS  PubMed  Google Scholar 

  59. Beck JA, Campbell TA, Adamson G, Poulter M, Uphill JB, Molou E et al. Association of a null allele of SPRN with variant Creutzfeldt-Jakob disease. J Med Genet 2008; 45: 813–817.

    Article  CAS  PubMed  Google Scholar 

  60. McGuire MM, Bowden W, Engel NJ, Ahn HW, Kovanci E, Rajkovic A . Genomic analysis using high-resolution single-nucleotide polymorphism arrays reveals novel microdeletions associated with premature ovarian failure. Fertil Steril 2011; 95: 1595–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), through Grant KL2TR000069 (SAS). The Cytochrome P-450 MLPA kit reagents used in this study were generously provided by MRC-Holland (Amsterdam, The Netherlands). We thank Dr Sarah Sim, Karolinska Institutet, Stockholm, Sweden, for critical reading of the manuscript; Ms Edith Gould, formerly of the Mount Sinai School of Medicine, New York, for her technical assistance with the MLPA assays; and Dr Minjie Luo, Mount Sinai School of Medicine, for assistance with the long-range PCR assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Scott.

Ethics declarations

Competing interests

One of the authors (RV) is an employee of MRC-Holland, Amsterdam, The Netherlands. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martis, S., Mei, H., Vijzelaar, R. et al. Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation. Pharmacogenomics J 13, 558–566 (2013). https://doi.org/10.1038/tpj.2012.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.48

Keywords

This article is cited by

Search

Quick links