Crystalline porous molecular frameworks formed through intermolecular hydrogen bonding calling hydrogen-bonded organic frameworks (HOFs) have recently been investigated as a new family of functional porous materials. In this review, HOFs composed of tritopic, tetratopic, and hexatopic carboxylic acid derivatives, which form H-bonded network such as those with hcb, sql, and hxl topologies depending on the numbers, positions, and orientations of the carboxy groups and conformational flexibility of the molecular skeletons, are reviewed by considering structural aspects such as isostructurality.