Spinocerebellar ataxia articles within Nature Communications

Featured

  • Article
    | Open Access

    The endolysosomal pathway plays an important role in regulating protein and lipid sorting and degradation. Here, the authors show that TMEM16K, an endoplasmic reticulum lipid scramblase, forms ER-endosome contact sites where it regulates endosomal sorting.

    • Maja Petkovic
    • , Juan Oses-Prieto
    •  & Yuh Nung Jan
  • Article
    | Open Access

    It is not yet clear how ubiquitously-expressed proteins can cause the selective degeneration of particular populations of neurons, such as in spinocerebellar ataxia type 17, SCA17, which results from a CAG trinucleotide repeat expansion in the ubiquitously expressed transcription factor TBP. Here, the authors show that mutant TBP suppresses the cerebellum-enriched transcription of Inpp5a and link altered levels of INPP5A to the selective degeneration of cerebellar neurons.

    • Qiong Liu
    • , Shanshan Huang
    •  & Shihua Li
  • Article
    | Open Access

    Disturbances in IP3 receptor-mediated release of Ca2+ from the endoplasmatic reticulum are associated with neurodegenerative disease. Here, the authors identify in four families with hereditary spastic paraplegia biallelic mutations in RNF170 that associate with increased basal levels of IP3 receptors.

    • Matias Wagner
    • , Daniel P. S. Osborn
    •  & Rebecca Schüle
  • Article
    | Open Access

    Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine repeats in the ATXN2 protein. Here the authors demonstrate that Staufen1, known to be an RNA-binding protein, interacts with ATXN2 and contributes to pathology in a mouse model of SCA2.

    • Sharan Paul
    • , Warunee Dansithong
    •  & Stefan M. Pulst