Semiconductors articles within Nature Communications

Featured

  • Article
    | Open Access

    Defects in materials are well known to suppress thermal transport. Here, the authors demonstrate that introducing defects in nanoscale heating zone enhances thermal conductance by up to 75% through reducing directional phonon nonequilibrium.

    • Yue Hu
    • , Jiaxuan Xu
    •  & Hua Bao
  • Article
    | Open Access

    Here, the authors perform Faraday rotation spectroscopy around the excitonic transitions in hBN-encapsulated WSe2 and MoSe2 monolayers, and interlayer excitons in MoS2 bilayers. They measure a large Verdet constant - 1.9 × 107 deg T¹cm¹ for monolayers, and attribute it to the giant oscillator strength and high g-factor of the excitons.

    • Benjamin Carey
    • , Nils Kolja Wessling
    •  & Ashish Arora
  • Article
    | Open Access

    The authors demonstrate that the band structure of graphene nanoribbons is modulated by cove edges, brightening the luminescence 4-fold via emission from otherwise dark twilight states. High spectral resolution of the optical response reveals strong vibron-electron coupling

    • Bernd K. Sturdza
    • , Fanmiao Kong
    •  & Robin J. Nicholas
  • Article
    | Open Access

    The microscopic structure of quantum defects in 2D materials is crucial to understand their optical properties and spin-photon interface. Here, the authors report the direct imaging of charge state-dependent symmetry breaking of sulfur vacancies and rhenium dopants in 2D MoS2, showing evidence of a Jahn-Teller effect.

    • Feifei Xiang
    • , Lysander Huberich
    •  & Bruno Schuler
  • Article
    | Open Access

    The interplay between electron-phonon and spin-orbit interactions has led to the concept of a spin-orbit polaron. Here the authors show that such a regime is realized in a spin-orbit-coupled Mott insulator, leading to a new polaron quasiparticle, and study its effect on the Mott metal-insulator transition.

    • Lorenzo Celiberti
    • , Dario Fiore Mosca
    •  & Cesare Franchini
  • Article
    | Open Access

    Via Raman and infrared spectroscopy measurements, X. Zan et al. find that rhombohedral ABC trilayer graphene has stronger electron/infrared-phonon coupling than Bernal ABA trilayer graphene.

    • Xiaozhou Zan
    • , Xiangdong Guo
    •  & Guangyu Zhang
  • Article
    | Open Access

    Real-time adaptive control of a qubit has been demonstrated but limited to single-axis Hamiltonian estimation. Here the authors implement two-axis control of a singlet-triplet spin qubit with two fluctuating Hamiltonian parameters, resulting in improved quality of coherent oscillations.

    • Fabrizio Berritta
    • , Torbjørn Rasmussen
    •  & Ferdinand Kuemmeth
  • Article
    | Open Access

    Sliding ferroelectricity occurs in stacks of van der Waals materials. Depending on the particular stacking, the system can host a spontaneous polarization, and under an applied electric field, polarization domain walls will propagate transverse to the electric field. Here, Yang et al use an optical approach to directly observe this sliding of domain walls in bilayer MoS2.

    • Dongyang Yang
    • , Jing Liang
    •  & Ziliang Ye
  • Article
    | Open Access

    Electron charge and spin shuttling is a promising technique for connecting distant spin qubits. Here the authors use conveyor-mode shuttling to achieve high-fidelity transport of a single electron spin in Si/SiGe by separation and rejoining of two spin-entangled electrons across a shuttling distance of 560 nm.

    • Tom Struck
    • , Mats Volmer
    •  & Lars R. Schreiber
  • Article
    | Open Access

    2D vertical transport transistors (VTFETs) may promote the downscaling of electronic devices, but their performance is usually restricted by the thermionic limit. Here, the authors report the realization of short-channel steep-slope VTFETs based on MoS2/MoTe2 heterojunctions integrated with resistance threshold switching cells.

    • Qiyu Yang
    • , Zheng-Dong Luo
    •  & Genquan Han
  • Article
    | Open Access

    The apparent electronic confinement at nanographene boundaries in scanning tunneling microscopy/spectroscopy is often misinterpreted. Here, the authors explain this phenomenon in terms of the decay of frontier orbitals and confinement at the edges of graphene nanoribbons and pores in nanoporous graphene.

    • Ignacio Piquero-Zulaica
    • , Eduardo Corral-Rascón
    •  & Johannes V. Barth
  • Article
    | Open Access

    Highly polarized nuclear spins can supress decoherence of electron spin qubits, but this requires near-unity polarization. Here the authors implement a protocol combining optical excitation and fast carrier tunnelling to achieve nuclear spin polarizations above 95% in GaAs quantum dots on a timescale of 1 minute.

    • Peter Millington-Hotze
    • , Harry E. Dyte
    •  & Evgeny A. Chekhovich
  • Article
    | Open Access

    The authors proposed a Silicon technology-compatible approach to convert Germanium from an indirect bandgap to a direct bandgap via doping. This is done to expand the lattice to produce tunable effective tensile strain, aiming towards the on-chip light sources.

    • Lin-Ding Yuan
    • , Shu-Shen Li
    •  & Jun-Wei Luo
  • Article
    | Open Access

    Spin and charge dynamics are inevitably linked, the study of the one often illuminating the other. Here, the authors study spin relaxation in ambipolar polymers and, backed by simulations, show how charge dynamics and wavefunction localization together set relaxation times up to room temperature.

    • Remington L. Carey
    • , Samuele Giannini
    •  & Henning Sirringhaus
  • Article
    | Open Access

    Hyperbolic exciton polaritons (HEPs) are anisotropic light-matter excitations with promising applications, but their steady-state observation is challenging. Here, the authors report experimental evidence of HEPs in a van der Waals magnet, CrSBr, via cryogenic infrared near-field microscopy.

    • Francesco L. Ruta
    • , Shuai Zhang
    •  & D. N. Basov
  • Article
    | Open Access

    S. Matsuo et al. report tunneling spectroscopy measurements on a device consisting of two Josephson junctions (JJ) sharing a single superconducting electrode. In isolation, each JJ would host an Andreev bound state (ABS). In their coherently-coupled JJs, the authors report the formation of an Andreev molecule due to hybridization of the two ABSs.

    • Sadashige Matsuo
    • , Takaya Imoto
    •  & Seigo Tarucha
  • Article
    | Open Access

    Charged impurities are a major source of charge noise in semiconductors. Here, using pump-probe time-resolved relative transmission measurements on cuprous oxide, the authors demonstrate a strategy for mitigating charged impurities by injection and subsequent breakdown of Rydberg excitons.

    • Martin Bergen
    • , Valentin Walther
    •  & Marc Aßmann
  • Article
    | Open Access

    Graphene quantum dots promise applications for spin and valley qubits; however a demonstration of phase coherent oscillations has been lacking. Here the authors report coherent charge oscillations and measurements of coherence times in highly tuneable double quantum dots in bilayer graphene.

    • K. Hecker
    • , L. Banszerus
    •  & C. Stampfer
  • Article
    | Open Access

    The authors demonstrate a large ensemble of quantum dots which is characterized using a cryogenic multiplexer-demultiplexer circuit based on selective area growth nanowires, establishing the feasibility of scaling future quantum circuits.

    • Dāgs Olšteins
    • , Gunjan Nagda
    •  & Thomas S. Jespersen
  • Article
    | Open Access

    The utilization of Mg3(Sb,Bi)2 in thermoelectric devices is hindered by its low performance near room temperature. Here, authors report thermoelectric performance enhancement of Mg3(Sb,Bi)2 within a wide temperature range by incorporating metallic inclusions at grain boundaries. (279 in total)

    • Jing-Wei Li
    • , Zhijia Han
    •  & Jing-Feng Li
  • Article
    | Open Access

    The fractional quantum Hall state at the filling factor 5/2 has been intensively studied due to its predicted non-Abelian statistics. Petrescu et al. measure the composite fermion effective mass of this state and find that it is several times larger than that in the half-filled lowest Landau level.

    • M. Petrescu
    • , Z. Berkson-Korenberg
    •  & G. Gervais
  • Article
    | Open Access

    Previous work on charge Kondo circuits, in which a spin is formed by two degenerate charge states of a metallic island, has been limited to transport measurements of multi-channel Kondo problems. Piquard et al. use thermodynamic measurements via a charge sensor to study the evolution of a single Kondo impurity.

    • C. Piquard
    • , P. Glidic
    •  & F. Pierre
  • Article
    | Open Access

    Andreev bound states can form in hybrid semiconducting-superconducting devices and can mirror the experimental signatures of the much sought topologically non-trivial Majorana bound states. Here, van Driel, Wang and coauthors present a method of directly measuring the spin-polarized excitation spectrum of Andreev bound states.

    • David van Driel
    • , Guanzhong Wang
    •  & Tom Dvir
  • Article
    | Open Access

    The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device.

    • Daniel Z. Haxell
    • , Marco Coraiola
    •  & Fabrizio Nichele
  • Article
    | Open Access

    Nuclear spins in solid-state systems present a promising platform for quantum information applications. Here the authors report evidence of the long-predicted entangled dark nuclear spin state via optical polarization of localized hole spins coupled to the nuclear bath in a lead halide perovskite semiconductor.

    • E. Kirstein
    • , D. S. Smirnov
    •  & M. Bayer
  • Article
    | Open Access

    Here, the authors use tip-enhanced photoluminescence spectroscopy to show a discontinuity of the exciton density distribution on each side of the interface of a MoSe2/WSe2 lateral heterostructure. They introduce the concept of ‘exciton Kapitza resistance’ by analogy with the interfacial thermal resistance known as ‘Kapitza resistance’.

    • Hassan Lamsaadi
    • , Dorian Beret
    •  & Jean-Marie Poumirol
  • Article
    | Open Access

    Hyperbolic phonon polaritons occurring in anisotropic materials exhibit strong light confinement and propagation directionality. Matson et al. report real-space imaging and control of recently discovered hyperbolic shear phonon-polaritons in beta-Ga2O3, arising from symmetry breaking in the dielectric response.

    • Joseph Matson
    • , Sören Wasserroth
    •  & Joshua D. Caldwell
  • Article
    | Open Access

    Negatively-charged boron vacancy centers in hBN have short coherence times, hindering their potential as quantum sensors. By employing dynamical decoupling, the authors achieve an ensemble coherence time approaching the fundamental relaxation limit, enabling sensitive detection of MHz range electromagnetic fields.

    • Roberto Rizzato
    • , Martin Schalk
    •  & Dominik B. Bucher
  • Article
    | Open Access

    Here authors show that gamma/beta double polymorph Ga2O3 structures exhibit unprecedently high radiation tolerance accommodating disorder equivalent to hundreds of displacements per atom. Thus, such Ga2O3 structures benchmark a new class of radiation tolerant semiconductors.

    • Alexander Azarov
    • , Javier García Fernández
    •  & Andrej Kuznetsov
  • Article
    | Open Access

    Avalanche and surge robustness are fundamental for power devices to survive overvoltage and overcurrent stresses in typical applications. Here, authors report NiO/Ga2O3 heterojunctions with smaller reverse recovery, higher switching speed, and a robustness competitive to that of conventional homojunctions.

    • Feng Zhou
    • , Hehe Gong
    •  & Jiandong Ye
  • Article
    | Open Access

    Hyperbolic phonon polaritons (HPhPs) in anisotropic van der Waals materials hold promise for nanophotonic applications, but their far-field characterization remains challenging. Here, the authors demonstrate the application of Raman spectroscopy in a backscattering configuration to determine the dispersion of HPhPs in thin GaSe crystals.

    • Alaric Bergeron
    • , Clément Gradziel
    •  & Sébastien Francoeur
  • Article
    | Open Access

    The photophysics of 2D layered Ruddlesden-Popper perovskites is still lively debated. Here, authors address the exciton stability of perovskites in form of film and single crystal by resonant injection of cold excitons and probe the exciton dissociation with femtosecond differential transmission.

    • Angelica Simbula
    • , Luyan Wu
    •  & Giovanni Bongiovanni
  • Article
    | Open Access

    Exciton-polariton condensates are hybrid systems with nonlinear interactions. Here the authors demonstrate metamaterials with inter-site polariton coupling and asynchronous locking of light fluids from neighbor sites at the energy detuning.

    • D. L. Chafatinos
    • , A. S. Kuznetsov
    •  & A. Fainstein
  • Article
    | Open Access

    Lattice reconstruction crucially influences the electronic properties of twisted van der Waals structures. Here, the authors report a quantitative characterization of the mechanical deformations occurring in small-angle twisted bilayers and heterobilayers of 2D semiconductors via interferometric 4D scanning transmission electron microscopy.

    • Madeline Van Winkle
    • , Isaac M. Craig
    •  & D. Kwabena Bediako
  • Article
    | Open Access

    Wigner molecules, or correlated localized electron states, has been reported in semiconductor quantum dots, but their interaction with environment has been less explored. Here the authors use the spin multiplet structure of a three-electron Wigner molecule to enhance and control dynamic nuclear polarization.

    • Wonjin Jang
    • , Jehyun Kim
    •  & Dohun Kim
  • Article
    | Open Access

    Interaction between localized electron spins and nuclear spins causes shifts in nuclear spin energy levels, but how this affects nuclear spin diffusion in quantum dots is not fully understood. Here the authors show that the central electron accelerates nuclear spin diffusion in GaAs/AlGaAs quantum dots.

    • Peter Millington-Hotze
    • , Santanu Manna
    •  & Evgeny A. Chekhovich