Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
RNA nanotechnology is a branch of nanotechnology concerned with the design, study and application of synthetic structures based on RNA. RNA nanotechnology takes advantage of the physical and chemical properties of RNA rather than the genetic information it carries.
mRNA delivery has shown great potential in the treatment of various diseases. Here, the authors develop a lantern-shaped flexible origami for nanolization of single mRNA molecules and demonstrate efficient delivery of Smad4 mRNA, achieving suppression of colorectal cancer tumour growth.
RNA nanostructures can be designed to fold during transcription, but the solution structure has remained elusive. Here the authors use cryogenic electron microscopy to determine the structure of a panel of RNA origami shapes and uncover the design and folding principles.
Hybrid nucleic acid origami has potential for biomedical delivery of mRNA and fabrication of artificial ribozymes. Here, the authors use chemical footprinting and cryo-electron microscopy to reveal insights into nucleic acid origami used to fold messenger and ribosomal RNA into 3D polyhedral structures.
A method has been developed to identify RNA transcript isoforms at the single-molecule level using solid-state nanopore microscopy. In this method, target RNA is refolded into RNA identifiers with designed sets of complementary DNA strands. Each reshaped molecule carries a unique sequence of structural (pseudo)colours that enables identification and quantification using solid-state nanopore microscopy.
Next-generation lipid nanoparticles that target non-hepatocytes could be important clinical tools. Using in vivo DNA barcoding, the authors identify piperazine-containing lipids deliver mRNA to immune cells without targeting ligands.
RNA has multiple roles in biology, enabled by its structural diversity. Now, artificially grafted RNA motifs have been encoded in a single RNA strand to form self-assembling nanostructures with controlled geometry and function.
Novoa, Mason and Mattick propose to use phage display technology and direct sequencing through nanopores to facilitate systematic interrogation of RNA modifications.