Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Quantum cascade lasers are made up of many thin layers of semiconductor. An injected electron makes a small energy transition as it moves from one layer to the next, emitting light on each cascade. Because the energy steps are small, quantum cascade lasers can produce long-wavelength mid-infrared or terahertz radiation.
Topological bulk BICs in the vicinity of inverted photonic band edges enable an electrically pumped, compact, single-mode, and beam engineered QCL to be operated at terahertz region.
We present a high-performance integrated platform for broadband active and passive coherent photonics based on planarized THz quantum cascade lasers, featuring low losses and improved dispersion, RF and thermal properties.
Rapid investigation of chemical reactions is a challenge in bio-medical analysis. Here, the authors demonstrate sensitive in-situ real-time reaction-monitoring of conformational changes in protein solution, based on a fingertip-sized mid-IR lab-on-a-chip.
Low threshold lasing is widely required, especially for portable systems. Here the authors design a circular subwavelength metallic aperture in a QCL to shape its phase front and control diffraction losses, which in turn allows a lower threshold dissipation power, enabling the fabrication of shorter cavities.
The journey to realize a terahertz quantum cascade laser that operates at room temperature has taken a jump forward with news of a device that operates at –23 °C, within the reach of Peltier coolers.
Quantum cascade lasers are bright and compact semiconductor lasers that emit light in the mid- to far-infrared spectral region. The use of a closed ring cavity has now set them on the path towards ultrafast pulses.