Premotor cortex

  • Article
    | Open Access

    Motor preparation processes guide movement. Here, by recording neural activity in monkeys reaching toward targets that can change location, the authors provide evidence that changing a prepared movement midway through completion reengages motor preparation.

    • K. Cora Ames
    • , Stephen I. Ryu
    •  & Krishna V. Shenoy
  • Article
    | Open Access

    It is not clear to what degree activity in dorsal premotor cortex (PMd) reflects perceptual-deliberation versus action-selection aspects of decision-making. Here, the authors report that monkey PMd neurons do not express correlates of the perceptual decision independently of the action choices.

    • Megan Wang
    • , Christéva Montanède
    •  & John F. Kalaska
  • Article
    | Open Access

    To explain the neural correlates of behavior and its variability, one must analyze single-trial population dynamics. Here, the authors develop a statistical method that extracts low-dimensional dynamics that explain behavior better than high-dimensional neural activity revealing unexpected structure.

    • Ziqiang Wei
    • , Hidehiko Inagaki
    •  & Shaul Druckmann
  • Article
    | Open Access

    It is debated whether motor cortical activity reflects plans for multiple potential actions. Here, the authors report that in a delayed response task with two potential reach targets, population activity in the dorsal premotor cortex at any moment in time represents only one of the targets.

    • Brian M. Dekleva
    • , Konrad P. Kording
    •  & Lee E. Miller
  • Article
    | Open Access

    Movements are continually constrained by the current body position and its relation to the surroundings. Here the authors report that the population activity of monkey dorsal premotor cortex neurons dynamically represents the probability distribution of possible reach directions.

    • Joshua I. Glaser
    • , Matthew G. Perich
    •  & Konrad P. Kording
  • Article
    | Open Access

    Dorsal premotor cortex (PMd) is thought to be involved in making somatomotor decisions. Chandrasekaran et al. investigated the temporal response dynamics of PMd neurons across cortical layers and show stronger and earlier decision-related responses in the superficial layers and more action execution-related signals in the deeper layers.

    • Chandramouli Chandrasekaran
    • , Diogo Peixoto
    •  & Krishna V. Shenoy