Physics

  • Article
    | Open Access

    Quantized response has so far eluded classical system beyond linear response theory. Here, the authors predict that a quantized classical response, arising from fundamental mathematical properties of the Green’s function, shows up in steady-state response of a non-Hermitian system without invoking a linear response theory.

    • Linhu Li
    • , Sen Mu
    •  & Jiangbin Gong
  • Article
    | Open Access

    Multistep nucleation phenomena are of considerable fundamental interest. Here the authors combine molecular dynamics, machine learning and molecular cluster analysis to investigate the multistep nucleation of smectic clusters from a nematic fluid that cannot be accounted for by the classical nucleation theory.

    • Kazuaki Z. Takahashi
    • , Takeshi Aoyagi
    •  & Jun-ichi Fukuda
  • Article
    | Open Access

    Free carriers and electrical polarization coexist in ferroelectric metals. Here, the authors use a capacitive method to probe the electronic compressibility of free carriers in a tunable semimetal, extract the polarized contribution, and study the carrier dependence of the ferroelectric state.

    • Sergio C. de la Barrera
    • , Qingrui Cao
    •  & Benjamin M. Hunt
  • Article
    | Open Access

    It was predicted that in the regime of strong electron-phonon interactions, electrons and phonons can form a coupled non-equilibrium state, characterized by the conservation of the total momentum and by hydrodynamic transport. Here, the authors report experimental evidence for such a coupled electron-phonon liquid in NbGe2.

    • Hung-Yu Yang
    • , Xiaohan Yao
    •  & Fazel Tafti
  • Article
    | Open Access

    N00N states are a key resource in quantum metrology, but the use of their multi-mode extension for multiparameter estimation has been elusive so far. Here, the authors use multi-mode N00N states - with N=2 photons in 4 modes - for multiple-phase estimation saturating the quantum Cramer-Rao bound.

    • Seongjin Hong
    • , Junaid ur Rehman
    •  & Hyang-Tag Lim
  • Article
    | Open Access

    Shock-wave driven reactions of organic molecules may have played a key role in prebiotic chemistry, but their mechanisms are difficult to investigate. The authors, using time-resolved x-ray diffraction and small-angle x-ray scattering experiments, observe the transformation of liquid benzene during a shock, identifying carbon and hydrocarbon solid products.

    • D. M. Dattelbaum
    • , E. B. Watkins
    •  & R. L. Sandberg
  • Article
    | Open Access

    Triplons are elementary spin excitations characteristic of dimerized magnets, carrying a spin angular momentum one. Here, the authors report evidence for spin current of triplons via thermal transport measurements in a spin-dimer compound CuGeO3.

    • Yao Chen
    • , Masahiro Sato
    •  & Eiji Saitoh
  • Article
    | Open Access

    Network dismantling allows to find minimum set of units attacking which leads to system’s break down. Grassia et al. propose a deep-learning framework for dismantling of large networks which can be used to quantify the vulnerability of networks and detect early-warning signals of their collapse.

    • Marco Grassia
    • , Manlio De Domenico
    •  & Giuseppe Mangioni
  • Article
    | Open Access

    So far, experimental results have favoured the often unstated assumption that quantum statistical properties of multiparticle systems are preserved in plasmonic platforms. Here, the authors show how multiparticle interference in photon-plasmon scattering can modify the excitation mode of plasmonic systems.

    • Chenglong You
    • , Mingyuan Hong
    •  & Omar S. Magaña-Loaiza
  • Article
    | Open Access

    Quantifying dimensionality of high-dimensional entangled states is challenging, especially in the presence of mixedness and noise. Here, the authors propose and demonstrate a method to quantify the dimensionality and purity of a bi-photon HD entangled state, scaling linearly with entanglement dimension.

    • Isaac Nape
    • , Valeria Rodríguez-Fajardo
    •  & Andrew Forbes
  • Article
    | Open Access

    Efficient conversion of microwave photons into electrical current would enable several applications in quantum technologies, especially if one could step outside of the gated-time regime. Here, the authors demonstrate continuous-time microwave photoconversion in double quantum dots with 6% efficiency.

    • Waqar Khan
    • , Patrick P. Potts
    •  & Ville F. Maisi
  • Article
    | Open Access

    In FeRh, it is possible to optically drive a phase transition between ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering. Here, using a combination of photoelectron spectroscopy and ab-initio calculations, the authors demonstrate the existence of a transient intermediate phase, explaining the delayed appearance of the FM phase.

    • Federico Pressacco
    • , Davide Sangalli
    •  & Fausto Sirotti
  • Article
    | Open Access

    The question whether a given isolated quantum many-body system would thermalize has currently no general answer. Here, Shiraishi and Matsumoto demonstrate the computational universality of thermalization phenomena already for simplified 1D systems, thus proving that the thermalization problem is undecidable.

    • Naoto Shiraishi
    •  & Keiji Matsumoto
  • Article
    | Open Access

    Balances for nanoparticles such as resonating fluid-filled cantilevers usually probe only mass through changes in oscillation frequency. Katsikis and Collis et al. tap information from previously ignored rotational motion to simultaneously measure particle mass and volume.

    • Georgios Katsikis
    • , Jesse F. Collis
    •  & Scott R. Manalis
  • Article
    | Open Access

    Skyrmions are a type of topological spin texture that great potential across a wide variety of technological applications. Here, Yu et al. study the thermally driven motion of Skyrmions and find a minimum temperature gradient for the motion of skyrmions two orders of magnitude smaller than for domain walls.

    • Xiuzhen Yu
    • , Fumitaka Kagawa
    •  & Yoshinori Tokura
  • Article
    | Open Access

    Additives have been widely used for passivating defects in perovskite semiconductors, yet the role of additive and their interaction is not clear. Here, the authors reveal an additive-assisted crystal formation in FAPbI3 perovskite by tracking the chemical interaction in the precursor solution and crystallographic evolution using multi-functional additives.

    • Lin Zhu
    • , Hui Cao
    •  & Jianpu Wang
  • Article
    | Open Access

    The discovery of high temperature superconductivity in hydrogen-rich compounds stimulates further extensive studies. Here, the authors report superconductivity in pressurized yttrium-hydrogen system with highest predicted Tc among binary compounds.

    • Panpan Kong
    • , Vasily S. Minkov
    •  & Mikhail I. Eremets
  • Article
    | Open Access

    The nonlinear Hall effect is a quantum phenomenon, in which two perpendicular currents induce a Hall voltage; however, previous theories for this effect has remained at the semi classical level. Here, the authors develop a full quantum theory of the nonlinear Hall effect by using the diagrammatic technique.

    • Z. Z. Du
    • , C. M. Wang
    •  & X. C. Xie
  • Article
    | Open Access

    The authors create synthetic dimensions in acoustic crystals composed of cavity arrays, strongly coupled through modulated channels. They provide evidence for 1D and 2D dynamic topological pumping, and show that the higher-order topological sound transport is robust against the geometrical imperfections.

    • Hui Chen
    • , Hongkuan Zhang
    •  & Guoliang Huang
  • Article
    | Open Access

    Surface plasmons have unique physical properties that make them also interesting for technology. Here, the authors observe plasmons in mixed-dimensional heterostructures that can be highly modulated with electrostatic gating, which may be explained by plasmon hybridization

    • Sheng Wang
    • , SeokJae Yoo
    •  & Feng Wang
  • Article
    | Open Access

    Synthetic anti-ferromagnets, where two ferromagnetic layers are coupled anti-ferromagnetically via a spacer, are known for their very large current-induced domain wall velocities. Here, Guan et al show that the velocity of the domain walls in synthetic anti-ferromagnetic nanowires can be tuned over a wide range due to reversible oxidization via ionic liquid gating.

    • Yicheng Guan
    • , Xilin Zhou
    •  & Stuart S. P. Parkin
  • Article
    | Open Access

    Radiationless relaxation is ubiquitous in natural processes and often involves excited states that are difficult to observe. Here the authors, combining X-ray transient absorption spectroscopy and computations, provide insight into the photoinduced dynamics in pyrazine and the involvement of an optically dark 1Au(nπ*) state.

    • Valeriu Scutelnic
    • , Shota Tsuru
    •  & Stephen R. Leone
  • Article
    | Open Access

    Spatiotemporal dynamic of charge carriers is commonly studied with optical or photoconductivity measurements, yet these techniques come with their own limitations. To circumvent these limits, the authors probe the free-carrier diffusion dynamics of microsecond lifetimes via laser-illuminated microwave impedance microscopy.

    • Xuejian Ma
    • , Fei Zhang
    •  & Keji Lai
  • Article
    | Open Access

    Common photovoltaic effect is across the interface of heterojunctions. Here, the authors find that scanning a light beam can induce a persistent in-plane photoelectric voltage along silicon-water interfaces, due to the following movement of a charge packet in the vicinity of the silicon surface.

    • Jidong Li
    • , Yuyang Long
    •  & Jun Yin
  • Article
    | Open Access

    The way quantum simulation algorithms are translated into specific hardware implementations often translates into additional overhead. Here, the authors improve the efficiency of Hamiltonian simulation using a method that allows efficient synthesis of multi-qubit evolutions from two-qubit interactions.

    • Laura Clinton
    • , Johannes Bausch
    •  & Toby Cubitt
  • Article
    | Open Access

    Tailoring the crystallization kinetics of materials is important for targeting applications. Here the authors observe a remarkable dependence of crystallization and vitrification kinetics and attribute it to systematic bonding changes for a class of materials between metallic and covalent bonding.

    • Christoph Persch
    • , Maximilian J. Müller
    •  & Matthias Wuttig
  • Article
    | Open Access

    High harmonic generation is a nonlinear optical phenomena and HHG from solid offers challenges and advantages over dilute media like gases. Here the authors report HHG from metallic thin film of titanium nitride and discuss the role of intraband current to HHG.

    • A. Korobenko
    • , S. Saha
    •  & P. B. Corkum
  • Article
    | Open Access

    Fabricating materials with simultaneously spontaneous magnetic and electrical polarisations is challenging due to contradictory electronic features. Here, the authors report a synthesis path toward a perovskite MnSrTa2O7 by performing low-temperature cation-exchange reactions on Li2SrTa2O7.

    • Tong Zhu
    • , Fabio Orlandi
    •  & Michael A. Hayward
  • Article
    | Open Access

    The motion of the ocean transports microorganisms, pollutants, and other particles, but these are challenging to track. Here the authors present a Lagrangian form of Betweenness Centrality which identifies bottlenecks in dynamical systems and fluid flows as well as an interpretation of diversity hotspots.

    • Enrico Ser-Giacomi
    • , Alberto Baudena
    •  & Emilio Hernández-García
  • Article
    | Open Access

    Advanced fabrication techniques enable a wide range of quantum devices, such as the realization of a topological qubit. Here, the authors introduce an on-chip fabrication technique based on shadow walls to implement topological qubits in an InSb nanowire without fabrication steps such as lithography and etching.

    • Sebastian Heedt
    • , Marina Quintero-Pérez
    •  & Leo P. Kouwenhoven
  • Article
    | Open Access

    Micro scale heat engines may be subjected to quite intriguing scenarios. Roy et al superimpose artificial random kicks on an optically trapped colloid, emulating a memoryless non-gaussian reservoir that markedly alters the conditions under which the engine performs at optimum efficiency.

    • Niloyendu Roy
    • , Nathan Leroux
    •  & Rajesh Ganapathy
  • Article
    | Open Access

    Widely existing self-organised complex structures in nature exhibit a high level of sophistication, yet can one program the self-assembly process to achieve similar result in the lab remains unanswered. Here, Serafin et al. present a non-Euclidean self-assembly theory for polyhedral nanoparticles that offers insight on how to manipulate the process for realising new material capabilities.

    • Francesco Serafin
    • , Jun Lu
    •  & Xiaoming Mao
  • Article
    | Open Access

    The orientation of polymer chains in the corona of polymer-grafted nanoparticles has never been measured. Here, the authors use polarized resonant soft X-ray scattering to measure local chain orientation in polystyrene grafted gold nanoparticles and quantify the thickness of the anisotropic region of the corona as well as the extent of chain orientation within it.

    • Subhrangsu Mukherjee
    • , Jason K. Streit
    •  & Dean M. DeLongchamp
  • Article
    | Open Access

    Pulsed operation of perovskite light-emitting diodes is of particular importance in display and visible light communication, yet the ionic behaviour under this mode is not well-understood. Here, the authors reveal that the transient electroluminescence intensity increases with increasing pulse width as the result of accumulation of mobile ions at the interfaces.

    • Naresh Kumar Kumawat
    • , Wolfgang Tress
    •  & Feng Gao
  • Article
    | Open Access

    Previous work has shown the existence of spin-orbit-entangled excitons and their coupling to antiferromagnetism in the correlated insulator NiPS3. Here the authors show that non-equilibrium driving of these excitons produces a transient metallic antiferromagnetic state that cannot be achieved by tuning the temperature in equilibrium.

    • Carina A. Belvin
    • , Edoardo Baldini
    •  & Nuh Gedik
  • Article
    | Open Access

    Whether the electronic nematicity is related to electronic pairing in strongly hole-doped iron-based superconductors remains controversial. Here, the authors perform transport measurements on AFe2As2 (A = K, Rb, Cs) superconductors under elastic strain, and find no indication of a nematic ordered state.

    • P. Wiecki
    • , M. Frachet
    •  & A. E. Böhmer
  • Article
    | Open Access

    Though bound states in the continuum (BICs) in acoustic systems are attractive for acoustic resonators design, acoustic BICs typically show low Q-factor. Here, the authors report a high performance open acoustic resonator that supports symmetry-protected, Friedrich-Wintgen and mirror symmetry-induced BICs.

    • Lujun Huang
    • , Yan Kei Chiang
    •  & Andrey E. Miroshnichenko
  • Article
    | Open Access

    In quantum mechanics, counterfactual behaviours are generally associated with particles being affected by events taking place where they can’t be found. Here, the authors consider extended quantum Cheshire cat scenarios where a particle can be influenced in regions where only its disembodied property has entered.

    • Yakir Aharonov
    • , Eliahu Cohen
    •  & Sandu Popescu
  • Article
    | Open Access

    Twisted monolayer-bilayer graphene is an attractive platform to study the interplay between topology, magnetism and correlations in the flat bands. Here, using electrical transport measurements, the authors uncover a rich correlated phase diagram and identify a new insulating state that can be explained by intervalley coherence with broken time reversal symmetry.

    • Minhao He
    • , Ya-Hui Zhang
    •  & Matthew Yankowitz
  • Article
    | Open Access

    Prediction of contagion dynamics is of relevance for epidemic and social complex networks. Murphy et al. propose a data-driven approach based on deep learning which allows to learn mechanisms governing network dynamics and make predictions beyond the training data for arbitrary network structures.

    • Charles Murphy
    • , Edward Laurence
    •  & Antoine Allard
  • Article
    | Open Access

    Graphene is the archetype for realizing two-dimensional topological phases of matter. Here, the authors introduce a new topological classification connected to polarization transport, where the topological number is revealed in the spatiotemporal dispersion of the susceptibility tensor.

    • Todd Van Mechelen
    • , Wenbo Sun
    •  & Zubin Jacob