Physics articles within Nature Communications

Featured

  • Article
    | Open Access

    Quantum annealing is usually discussed as a means of finding an optimal solution for a problem where there are many local minima, such as the travelling salesman. Here, Zhao et al present an intriguing example of quantum annealing in the case of the frustrated magnet α-CoV2O6, where a transverse magnetic field triggers the quantum annealing process.

    • Yuqian Zhao
    • , Zhaohua Ma
    •  & Yuesheng Li
  • Article
    | Open Access

    Recently, excitons with unconventional properties were reported in a van der Waals antiferromagnet NiPS3. Here, using resonant inelastic x-ray scattering, the authors show that the formation of these excitons is primarily driven by Hund’s coupling and that they propagate similarly to two-magnon excitations.

    • W. He
    • , Y. Shen
    •  & M. P. M. Dean
  • Article
    | Open Access

    The thermal Hall effect is a novel probe of neutral excitations in insulators; however, the mechanism behind one type of neutral excitations – phonons – is still unclear. Here the authors observe a planar thermal Hall effect in the Kitaev candidate material Na2Co2TeO6 and proposed that it is generated by phonons.

    • Lu Chen
    • , Étienne Lefrançois
    •  & Louis Taillefer
  • Article
    | Open Access

    Normal mode analysis is a crucial step in structural biology, but is based on an expensive diagonalisation of the system’s Hessian. Here the authors present INCHING, a GPU-based approach to accelerate this task up to >250 times over current methods for macromolecular assemblies.

    • Jordy Homing Lam
    • , Aiichiro Nakano
    •  & Vsevolod Katritch
  • Article
    | Open Access

    The authors experimentally study a chain of superconducting islands (SI) and quantum dots (QD), where a Bogoliubov quasiparticle occupies each SI. They demonstrate correlations between the quasiparticles in each SI mediated by a single spin on the QD, known as an “over-screened" doublet state of the QD.

    • Juan Carlos Estrada Saldaña
    • , Alexandros Vekris
    •  & Jesper Nygård
  • Article
    | Open Access

    Schools, flocks and related forms of collective behavior and collective locomotion involve complicated fluid dynamical interactions. Here, using a “mock flock" of robotic flappers, authors report that the interaction between leaders and followers is similar to one-way springs, leading to lattice-like self-organization but also a new type of traveling-wave disturbance.

    • Joel W. Newbolt
    • , Nickolas Lewis
    •  & Leif Ristroph
  • Article
    | Open Access

    Thin crystals grown on rigid spherical templates of increasing curvature exhibit increased protrusions. Here, the authors demonstrate the opposite curvature effect on the morphology of molecularly thin crystals grown within elastic fluid membranes, like those of biological cells.

    • Hao Wan
    • , Geunwoong Jeon
    •  & Maria M. Santore
  • Article
    | Open Access

    Large-scale eDMFT computation reveals that FeO undergoes a gradual orbitally selective insulator-metal transition across the extreme conditions of Earth’s interior, with implications for compositions and conductivity of the core-mantle boundary region.

    • Wai-Ga D. Ho
    • , Peng Zhang
    •  & Vasilije V. Dobrosavljevic
  • Article
    | Open Access

    F-actin architecture modulates transmission and generation of stresses in cells, yet its impact on myosin ATP hydrolysis remains unknown. The authors perform experiments measuring myosin ATP hydrolysis rates, showing that F-actin architecture can control myosin energy consumption.

    • Ryota Sakamoto
    •  & Michael P. Murrell
  • Article
    | Open Access

    Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures, including quantum computing. Here, the authors show that dynamically optimizing the acoustic parameters of the refrigerator can improve conventional cooldown speeds up to 3.5 times.

    • Ryan Snodgrass
    • , Vincent Kotsubo
    •  & Joel Ullom
  • Article
    | Open Access

    Measuring quantum entanglement remains a demanding task. The authors introduce two functions to quantify entanglement induced by fermionic or bosonic statistics, in transport experiments. Both functions, in theory and experiment, are remarkably resilient against the nonuniversal effects of interactions.

    • Gu Zhang
    • , Changki Hong
    •  & Yuval Gefen
  • Article
    | Open Access

    The authors characterize the phonon modes at the FeSe/SrTiO3 interface with atomically resolved electron energy loss spectroscopy and correlate them with accurate atomic structure in an electron microscope. They find several phonon modes highly localized at the interface, one of which engages in strong interactions with the electrons in FeSe.

    • Ruochen Shi
    • , Qize Li
    •  & Peng Gao
  • Article
    | Open Access

    All holographic displays and imaging techniques are fundamentally limited by the étendue supported by existing spatial light modulators. Here, the authors report on using artificial intelligence (AI) to learn an étendue expanding element that effectively increases étendue by two orders of magnitude.

    • Ethan Tseng
    • , Grace Kuo
    •  & Felix Heide
  • Article
    | Open Access

    MnBi2Te4 is an antiferromagnetic topological insulator. This combination of magnetic ordering and topological properties has resulted in intense interest, however, like many van der Waals materials, experimental results are hampered by fabrication difficulties. Here, Li, Wang, Lian et al. show that the fabrication process itself can result in mismatched thickness dependence of magneto-transport measurements. ‘

    • Yaoxin Li
    • , Yongchao Wang
    •  & Chang Liu
  • Article
    | Open Access

    In addition to its low-field superconducting state, UTe2 features a re-entrant superconducting state when high magnetic fields are applied at a particular range of angles. Here, the authors demonstrate that the high-field re-entrant superconducting state survives even when the low-field superconducting state is destroyed by disorder.

    • Corey E. Frank
    • , Sylvia K. Lewin
    •  & Nicholas P. Butch
  • Article
    | Open Access

    The authors study monolayer FeSe via scanning tunneling microscopy and simultaneous micron-scale-probe-based transport. They observe distinct superconducting phases in domains and on boundaries between domains, with different superconducting gaps and pairing temperatures.

    • Dapeng Zhao
    • , Wenqiang Cui
    •  & Qi-Kun Xue
  • Article
    | Open Access

    Many volatile elements are depleted in the bulk silicate Earth. Here, the authors found that these volatile elements tend to react with Fe under pressure and may be sequestered within Earth’s core by forming substitutional Fe alloys.

    • Yifan Tian
    • , Peiyu Zhang
    •  & Hanyu Liu
  • Article
    | Open Access

    Nearly a century after dark matter was proposed, yet its nature remains elusive. Here, authors present their dark photon dark matter search results using two atomic magnetometer arrays 1700 km apart in large magnetic shields and offer the strongest terrestrial constraint in this mass range to date.

    • Min Jiang
    • , Taizhou Hong
    •  & Jiangfeng Du
  • Article
    | Open Access

    Thurner and colleagues explore how economic shocks spread risk through the globalized economy. They find that rich countries expose poor countries stronger to systemic risk than vice-versa. The risk is highly concentrated, however higher risk levels are not compensated with a risk premium in GDP levels, nor higher GDP growth. The findings put the often-praised benefits for developing countries from globalized production in a new light, by relating them to risks involved in the production processes

    • Abhijit Chakraborty
    • , Tobias Reisch
    •  & Stefan Thurner
  • Article
    | Open Access

    Bound states in continuum have attracted attention in various platforms, and recently condensation of bound states in continuum polariton modes was demonstrated at low temperatures. Here the authors report the observation of such a state in a periodic air-hole perovskite-based photonic crystal at room temperature.

    • Xianxin Wu
    • , Shuai Zhang
    •  & Xinfeng Liu
  • Article
    | Open Access

    Phase diagrams of materials are typically based on a static order parameter, but it faces challenges when distinguishing subtle phase changes, such as re-ordering. Here the authors introduce a dynamic re-order parameter, in particular magnons, and illustrate it in a material with complex magnetic phases.

    • Byung Cheol Park
    • , Howon Lee
    •  & Taewoo Ha
  • Article
    | Open Access

    The problem of reversibility within general quantum resource theories is still an open one. Here, the authors prove that a reversible entanglement manipulation framework (and, consequently, the concept of entanglement entropy) can be formally established by adjusting the setting to allow for probabilistic operations

    • Bartosz Regula
    •  & Ludovico Lami
  • Article
    | Open Access

    Correlated insulator states of moire excitons in transition metal dichalcogenide heterostructures have attracted significant attention recently. Here the authors use time-resolved pump-probe spectroscopy to demonstrate the effects of non-equilibrium correlations of moire excitons in WSe2/WS2 heterobilayers.

    • Jinjae Kim
    • , Jiwon Park
    •  & Hyunyong Choi
  • Article
    | Open Access

    Magnetohydrodynamic (MHD) waves observed on the Sun help understanding solar plasma and involved processes. Here, the authors show resolved MHD waves in the solar corona displaying MHD lensing effect.

    • Xinping Zhou
    • , Yuandeng Shen
    •  & Chengrui Zhou
  • Article
    | Open Access

    Here the authors integrate optical and acoustic manipulation techniques to generate localized Lamb fields that emulate arbitrary laser patterns and demonstrate programmable nanoparticle patterning over a centimeter-scale area.

    • Ruoqin Zhang
    • , Xichuan Zhao
    •  & Feng Li
  • Article
    | Open Access

    Inertial active matter can self-organize into coexisting phases that feature different temperatures, but experimental realizations are limited. Here, the authors report the coexistence of hot liquid and cold gas states in mixtures of overdamped active and inertial passive Brownian particles, giving a broader relevance.

    • Lukas Hecht
    • , Iris Dong
    •  & Benno Liebchen
  • Comment
    | Open Access

    Can many-body systems be beneficial to designing quantum technologies? We address this question by examining quantum engines, where recent studies indicate potential benefits through the harnessing of many-body effects, such as divergences close to phase transitions. However, open questions remain regarding their real-world applications.

    • Victor Mukherjee
    •  & Uma Divakaran
  • Article
    | Open Access

    Photosynthesis in biological systems occurs in a noisy environment that reduces the lifetime of coherences in the excitation energy transfer. Here the author demonstrate that long-lasting coherences are protected by quantum phase synchronization, realized in dimers by exciton-vibrational coupling where energy dissipation occurs predominantly in resonant anti-symmetric collective modes.

    • Ruidan Zhu
    • , Wenjun Li
    •  & Yuxiang Weng
  • Article
    | Open Access

    Bernal-stacked bilayer graphene (BLG) has been extensively studied due to its tunable band gap and emerging electronic properties, but its low-energy band structure remains debated. Here, the authors report magnetotransport measurements of Bernal BLG, showing evidence of four Dirac cones and electrically induced topological transitions.

    • Anna M. Seiler
    • , Nils Jacobsen
    •  & R. Thomas Weitz
  • Article
    | Open Access

    Superconductors with hexagonal symmetry are expected to be isotropic particularly near the critical temperature Tc, a property called emergent rotational symmetry (ERS). Here, the authors use calorimetry to study the hexagonal kagome superconductor CsV3Sb5 and find a violation of the expected ERS, hinting at realization of exotic superconductivity.

    • Kazumi Fukushima
    • , Keito Obata
    •  & Shingo Yonezawa
  • Article
    | Open Access

    Collective cooperation is found across many social and biological systems. Here, the authors find that infrequent hub updates promote the emergence of collective cooperation and develop an algorithm that optimises collective cooperation with update rates.

    • Yao Meng
    • , Sean P. Cornelius
    •  & Aming Li
  • Article
    | Open Access

    Entangled local states can be made capable of violating Bell inequalities via nonlocality activation. Typical theoretical approaches require processing many copies of the original state and performing joint measurements on the ensemble. Here, instead, the authors experimentally demonstrate how to do so using a single copy of the state, broadcasting it to two spatially separated parties within a three-node network.

    • Luis Villegas-Aguilar
    • , Emanuele Polino
    •  & Geoff J. Pryde
  • Article
    | Open Access

    Collective behavior of nonlinear soft valves forming fluid flow networks is not well understood. The authors reveal the mechanisms underlying the collective behavior of soft flow networks with negative differential resistance elements.

    • Alejandro Martínez-Calvo
    • , Matthew D. Biviano
    •  & Miguel Ruiz-García
  • Article
    | Open Access

    The frequency scaling exponent of low-frequency vibrational excitations in glasses remains controversial in the literature. Here, Schirmacher et al. show that the exponent depends on the statistics of the small values of the local stresses, which is governed by the detail of interaction potential.

    • Walter Schirmacher
    • , Matteo Paoluzzi
    •  & Giancarlo Ruocco
  • Article
    | Open Access

    Luo et al. report a self-driven hemispherical retinomorphic eye that employs ionogel heterojunctions as photoreceptors. This photoreceptor exhibits broadband photosynapse, high conformability, retinal transplantation, and visual restoration for re-time optical imaging and motion tracking.

    • Xu Luo
    • , Chen Chen
    •  & Wei Huang
  • Article
    | Open Access

    Here, the authors perform Faraday rotation spectroscopy around the excitonic transitions in hBN-encapsulated WSe2 and MoSe2 monolayers, and interlayer excitons in MoS2 bilayers. They measure a large Verdet constant - 1.9 × 107 deg T¹cm¹ for monolayers, and attribute it to the giant oscillator strength and high g-factor of the excitons.

    • Benjamin Carey
    • , Nils Kolja Wessling
    •  & Ashish Arora
  • Article
    | Open Access

    Interesting non-Hermitian quantum dynamics can be accessed in analogue quantum simulators consisting of Hermitian bosonic systems with squeezing and antisqueezing terms. Here, the authors use a coplanar waveguide resonator connected to a SQUID to simulate the bosonic version of the Kitaev chain.

    • Jamal H. Busnaina
    • , Zheng Shi
    •  & Christopher M. Wilson