Organizing materials with DNA

Latest Research and Reviews

  • Research
    | Open Access

    Organising proteins in 2D and 3D is needed to develop complex bimolecular materials for a range of applications. Here, the authors report the encapsulation of ferritin and apoferritin in DNA-based voxels with programmed assembly to generate both 2D and 3D protein lattices and demonstrate the retention of protein function.

    • Shih-Ting Wang
    • , Brian Minevich
    •  & Oleg Gang
  • Research
    | Open Access

    DNA templating is a useful strategy to control the positioning and aggregation of molecular dyes on a sub-nanometer scale, but sub-angstrom control is desirable for the precise tailoring of excitonic properties. Here, the authors show that templating squaraine dyes functionalized with rotaxane rings promotes an elusive oblique packing arrangement and extended excited-state lifetimes.

    • Matthew S. Barclay
    • , Simon K. Roy
    •  & Ryan D. Pensack
  • Research
    | Open Access

    Fabrication of superconducting 3D nanoarchitectures, using standard nanofabrication methods, is challenging. Here, the authors demonstrate the fabrication of a nanostructured 3D superconducting array of Josephson junctions, exploiting self-assembled DNA origami lattices as a template.

    • Lior Shani
    • , Aaron N. Michelson
    •  & Oleg Gang
  • Research |

    Multivalent binding is a common strategy to enhance the interactions between weak binding partners. Now, following this principle, DNA origami scaffolds have been used to arrange DNA aptamers into specific geometries and to optimize linker spacings and flexibilities, which results in artificial binding sites with very high affinities for their corresponding ligands.

    • Ali Aghebat Rafat
    • , Sandra Sagredo
    •  & Friedrich C. Simmel
    Nature Chemistry 12, 852-859

News and Comment

  • News & Views |

    Modelling the structure and behaviour of vesicles in cells requires liposomes with precise sizes, but producing liposomes with a narrow size distribution is challenging. An approach has now been developed to accurately size-sort liposomes in a scalable way by coating them with customized structures based on DNA nanotechnology.

    • Silvia Hernández-Ainsa
    Nature Chemistry 13, 301-302
  • Comments & Opinion |

    The complexity of DNA-programmed nanoparticle assemblies has reached an unprecedented level owing to recent advances that enable delicate and comprehensive control over the formation of DNA bonds.

    • Shuoxing Jiang
    • , Fei Zhang
    •  & Hao Yan
    Nature Materials 19, 694-700
  • News & Views |

    Dye molecules are shown to assemble into J-aggregate arrays by sequence-specific organization in the minor groove of DNA duplex sequences. Energy transfer through these structures displays the hallmarks of coherent coupling over distances that exceed those of conventional dipole-coupling processes.

    • Marcel P. Bruchez
    Nature Materials 17, 112-113
  • News & Views |

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson–Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver–DNA hybrid duplex featuring an uninterrupted silver array.

    • Pascal Auffinger
    •  & Eric Ennifar
    Nature Chemistry 9, 932-934