Optics and photonics articles within Nature Communications

Featured

  • Article
    | Open Access

    Here the authors experimentally realized a systematic approach to synthesize arbitrary-size two-dimensional all-band-flat photonic lattices, which pave a route for investigating flat-band related physics such as slow-light, nonlinear breathing, and dispersionless image transmission.

    • Jing Yang
    • , Yuanzhen Li
    •  & Fei Gao
  • Article
    | Open Access

    The authors showcase a video-rate hyperspectral imager based on a single-pixel photodetector that can achieve high-throughput hyperspectral video recording at a low bandwidth. Specifically, they propose a joint spatial-spectral encoding scheme which can encode the scene into highly compressed single-pixel measurements and obtain temporal correlation at the same time.

    • Yibo Xu
    • , Liyang Lu
    •  & Kevin F. Kelly
  • Article
    | Open Access

    The enantiomer fraction strategy can achieve continuous control of the phase transition temperature, chiroptical properties, SHG intensity and other properties of chiral two-dimensional lead bromide ferroelectrics.

    • Chang-Chun Fan
    • , Cheng-Dong Liu
    •  & Wen Zhang
  • Article
    | Open Access

    Astrocombs serve as precision calibrators for astrophysical spectrographs by providing a regular sequence of optical lines on a multi-GHz grid. Here, the authors report the first broadband astrocomb in the UV to blue-green spectral region, where stellar absorption lines are most abundant.

    • Yuk Shan Cheng
    • , Kamalesh Dadi
    •  & Derryck T. Reid
  • Article
    | Open Access

    An efficient and physically accurate platform is required to rapidly design high-performance integrated photonic devices. Here, the authors present a scalable framework for creating on-chip optical systems with complex and arbitrary functionality.

    • Ali Najjar Amiri
    • , Aycan Deniz Vit
    •  & Emir Salih Magden
  • Article
    | Open Access

    The Authors report a novel architecture of photonic beamformer capable of achieving broadband operation and a high number of pointing angles. We demonstrate the operation of a 5-bit beamformer capable of providing 32 pointing angles in the 10−30 GHz range.

    • Pablo Martinez-Carrasco
    • , Tan Huy Ho
    •  & José Capmany
  • Article
    | Open Access

    Applications of spontaneous symmetry breaking are hindered by unavoidable imperfections. Here, the authors reveal how a phase defect provides topological robustness to this process, enabling a bias free realization without fine tuning of parameters.

    • Stéphane Coen
    • , Bruno Garbin
    •  & Julien Fatome
  • Article
    | Open Access

    Differential absorption of polarized light, called dichroism, does not exist in amorphous solids due to the disordered arrangements of atoms. Here, the authors demonstrate that dichroism is intrinsic to all solids and can be controlled using helical light beams carrying orbital angular momentum.

    • Ashish Jain
    • , Jean-Luc Bégin
    •  & Ravi Bhardwaj
  • Article
    | Open Access

    Electric modulation of second harmonic generation finds applications in integrated photonics. Here, authors introduce electric field-induced second harmonic generation by polar skyrmions in PbTiO3/SrTiO3 superlattices with giant modulation depth.

    • Sixu Wang
    • , Wei Li
    •  & Qian Li
  • Article
    | Open Access

    The authors present a switchable dual colour orthogonal linear polarized OLED by internally integrating a nanograting for selective diffraction of optical modes, which is appealing for applications including polarisation-encrypted colourful optical images and autostereoscopic naked-eye 3D displays.

    • Ruixiang Chen
    • , Ningning Liang
    •  & Tianrui Zhai
  • Article
    | Open Access

    Here the authors propose an isotropic three-dimensional metamaterial with nonreciprocal magnetoelectric resonant responses at visible and mid-infrared frequencies. The proposed metamaterials do not require external magnetization.

    • Shadi Safaei Jazi
    • , Ihar Faniayeu
    •  & Viktar Asadchy
  • Article
    | Open Access

    The integration of 2D materials with metasurfaces can enhance their quantum efficiency, but the approach is usually limited to a narrow spectral band. Here, the authors report the realization of gate-tunable graphene photodetectors combined with all-dielectric periodic slits, leading to enhanced photoresponse in the short-to-long-wave infrared.

    • Hao Jiang
    • , Jintao Fu
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    Detecting hydrogen gas in humid air is an unresolved challenge of significant importance for the safe implementation of hydrogen (energy) technologies. Here, authors demonstrate how the use of neural networks enables the sensing of hydrogen in highly humid air with a detection limit of 100 ppm.

    • David Tomeček
    • , Henrik Klein Moberg
    •  & Christoph Langhammer
  • Article
    | Open Access

    The authors investigate light beam propagation in multimode optical fibers, considering linear random mode coupling and Kerr nonlinearity. They utilize a 3D mode decomposition technique, enabling them to accurately characterize modal distributions over extended lengths of graded-index fiber.

    • Mario Zitelli
    • , Fabio Mangini
    •  & Stefan Wabnitz
  • Article
    | Open Access

    Solid-state spatio-spectral coherent light detection and ranging system is proposed based on flutter-wavelength-swept laser for real-time four-dimensional coherent imaging over extended measurable distance even in challenging environments.

    • Dawoon Jeong
    • , Hansol Jang
    •  & Chang-Seok Kim
  • Article
    | Open Access

    The authors showcase an innovative anti-reflective vertical-cavity surface-emitting laser (AR-VCSEL) that achieves low divergence and maintains a single-mode lasing. The 6-junction AR-VCSEL array demonstrates low divergence from 8° to 16° (D86) and tripled brightness compared to conventional counterparts. The AR-VCSEL offers an excellent avenue for long-distance LiDARs.

    • Cheng Zhang
    • , Huijie Li
    •  & Dong Liang
  • Article
    | Open Access

    New detector materials are crucial for radiation beam monitoring in dosimeters and X-ray imaging. The authors report a solution-grown biocompatible organic single crystalline semiconductor for real-time spectral detection of charged particles with single-particle sensitivity, X-ray detection and imaging.

    • Dou Zhao
    • , Ruiling Gao
    •  & Yadong Xu
  • Article
    | Open Access

    The Authors present a universal framework that utilizes photonic integrated circuits (PIC) to enhance the efficiency of reinforcement learning (RL). Leveraging the advantages of the hybrid architecture PIC (HyArch PIC), the PIC-RL experiment demonstrates a remarkable 56% improvement in efficiency for synthesizing perovskite materials.

    • Xuan-Kun Li
    • , Jian-Xu Ma
    •  & Xian-Min Jin
  • Article
    | Open Access

    Waterproof flexible organic solar cells without compromising mechanical flexibility and conformability remains challenging. Here, the authors demonstrate in-situ growth of hole-transporting layer to strengthen interfacial and thermodynamic adhesion for better waterproofness in 3 μm-thick devices.

    • Sixing Xiong
    • , Kenjiro Fukuda
    •  & Takao Someya
  • Comment
    | Open Access

    Synthetic optical materials have been recently employed as a powerful platform for the emulation of topological phenomena in wave physics. Topological phases offer exciting opportunities, not only for fundamental physics demonstrations, but also for practical technologies. Yet, their impact has so far been primarily limited to their claimed enhanced robustness. Here, we clarify the role of robustness in topological photonic systems, and we discuss how topological photonics may offer a wider range of important opportunities in science and for practical technologies, discussing emergent and exciting research directions.

    • Alexander B. Khanikaev
    •  & Andrea Alù
  • Article
    | Open Access

    The authors showcase a five-channel silicon microring modulator array with a total data rate in the terabit range. Each microring is equipped with two separate Z-shape junctions to overcome the bandwidth and modulation efficiency trade-off, providing a pathway for future 200 Gb/s/lane silicon optical interconnects.

    • Yuan Yuan
    • , Yiwei Peng
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    Here the authors unveil an approach rooted in non-Hermitian physics to precisely control light amplification in an integrated photonic platform, paving the way for innovative on-chip functionalities, like coherent control of light amplification and routing.

    • Weijie Liu
    • , Quancheng Liu
    •  & Feng Chen
  • Article
    | Open Access

    Silicon microring resonator plays crucial role in optical computing owing to the compact footprint and energy-efficiency, yet existing modulators require >2 V to drive it. Here, the authors present a solution to this by using metal-oxide-semiconductor capacitor microring that brings down the driving voltage to 0.8 V.

    • Wei-Che Hsu
    • , Nabila Nujhat
    •  & Alan X. Wang
  • Article
    | Open Access

    Nonlinear epsilon-near-zero nanodevices are attractive solutions for large-scale integrated system-on-chips yet heat genearation upon operation affects their performance. Here, the authors studied the linear and nonlinear thermo-optic effects in the indium tin oxide, commonly used material for this system.

    • Jiaye Wu
    • , Marco Clementi
    •  & Camille-Sophie Brès
  • Article
    | Open Access

    The charge-density-wave Weyl semimetal (TaSe4)2I is a candidate for an axion insulator, however it may be obscured by polaron physics. Here, using ultrafast terahertz photocurrent spectroscopy, the authors realize phase switches from the polaronic state, to the charge density wave phase, and to the Weyl phase.

    • Bing Cheng
    • , Di Cheng
    •  & Jigang Wang
  • Perspective
    | Open Access

    In order to complete the transition to the era of large-scale integration, silicon photonics will have to overcome several challenges. Here, the authors outline what these challenges are and what it will take to tackle them.

    • Sudip Shekhar
    • , Wim Bogaerts
    •  & Bhavin J. Shastri
  • Article
    | Open Access

    Here, the authors report the generation and manipulation of transient hyperbolic plasmons in black phosphorus via ultrafast photocarrier injection, demonstrating a topological transition of the non-equilibrium iso-frequency contours and the coexistence of different transient plasmonic modes.

    • Rao Fu
    • , Yusong Qu
    •  & Jianing Chen
  • Article
    | Open Access

    Progress has been made in the development of low-loss monocrystalline plasmonic metals, opening up opportunities for ultrathin nanophotonic architectures. Here, the authors reveal differences in hot-electron thermalisation dynamics between ultrathin monocrystalline and polycrystalline gold films.

    • Can O. Karaman
    • , Anton Yu. Bykov
    •  & Anatoly V. Zayats
  • Article
    | Open Access

    Scanning tunnelling microscopy-based H desorption lithography is used for atomic-scale patterning of quantum devices in Si, but its time-consuming nature hinders scalability. Here the authors report H desorption from Si(001):H surface using extreme-UV light and explore implications for patterning.

    • Procopios Constantinou
    • , Taylor J. Z. Stock
    •  & Steven R. Schofield
  • Article
    | Open Access

    Recent studies have reported miniaturized spectrometers based on van der Waals heterostructures. Here, the authors demonstrate multifunctional SnS2/ReSe2 heterojunction spectrometers providing photodetection, spectrum reconstruction, spectral imaging, long-term image memory, and signal processing capabilities.

    • Gang Wu
    • , Mohamed Abid
    •  & Han-Chun Wu
  • Article
    | Open Access

    Topological photonics could impact the scalability of integrated photonics, but it has shown limited reconfigurability to date. Here, the authors demonstrate reprogrammable integrated photonics as a nearly universal platform for topological models.

    • Mehmet Berkay On
    • , Farshid Ashtiani
    •  & Andrea Blanco-Redondo
  • Article
    | Open Access

    Multifunctional active mid-infrared ring resonators and directional couplers with quantum cascade laser cores allow electrical control of resonant frequency and quality factors, tunable filtering and frequency comb generation.

    • Dmitry Kazakov
    • , Theodore P. Letsou
    •  & Federico Capasso