Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
In laser-driven inertial fusion, finding optimal driving pressure is a major challenge. Here, the authors use a 100 kJ SG laser and a hybrid-drive scheme to demonstrate such driving pressure with the help of the direct-drive laser such that the indirect-drive radiation ablation pressure is turned into a well-smoothed hybrid-drive pressure much greater than the radiation ablation pressure.
Ignition of a millimetre-sized pellet containing a mix of deuterium–tritium, published in 2022, puts to rest questions about the capability of lasers to ignite thermonuclear fuel.
In a burning plasma, fusion-born α particles are the dominant source of heating. In such conditions, the deuterium and tritium ion energy distribution deviates from the expected thermal Maxwellian distribution.
Since the 1950s, international cooperation has been the driving force behind fusion research. Here, we discuss how the International Atomic Energy Agency has shaped the field and the events that have produced fusion’s global signature partnership.