Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
In laser-driven inertial fusion, finding optimal driving pressure is a major challenge. Here, the authors use a 100 kJ SG laser and a hybrid-drive scheme to demonstrate such driving pressure with the help of the direct-drive laser such that the indirect-drive radiation ablation pressure is turned into a well-smoothed hybrid-drive pressure much greater than the radiation ablation pressure.
Covalent organic frameworks are used in capture of radioactive ions but achieving high separation factors remains challenging. Here, the authors design an ionic COF its neutral non-ionic to better understand the role of different N sites on the selective capture of Th(IV) and report remarkable separation factors ranging from 102 to 105.
Ignition of a millimetre-sized pellet containing a mix of deuterium–tritium, published in 2022, puts to rest questions about the capability of lasers to ignite thermonuclear fuel.
In a burning plasma, fusion-born α particles are the dominant source of heating. In such conditions, the deuterium and tritium ion energy distribution deviates from the expected thermal Maxwellian distribution.
Increasing public and private investment, technological breakthroughs, and a growing number of facilities could bring fusion technology to the delivery era by mid-century. Matteo Barbarino argues that global cooperation and effective regulation are vital in accelerating progress.
Science diplomacy has become an important dimension of international relations. Here’s a take on the past, present and future of fusion science diplomacy and the role such big collaborative endeavours play in shaping the future of this field in the international political sphere.