Nanoscience and technology articles within Nature Communications

  • Article |

    The 3D self-assembly of nanocrystals could generate materials with unique optical and electronic properties. Barrowet al. report the DNA-mediated assembly of symmetrical 3D gold tetrahedra, pentamers and hexamers, and elucidate their plasmon modes.

    • Steven J. Barrow
    • , Xingzhan Wei
    •  & Paul Mulvaney
  • Article
    | Open Access

    In a nonlinear medium, a pump laser beam generates and amplifies a second beam at a different frequency through stimulated Raman scattering. Sirleto et this effect in silicon nanocrystals in a silicon matrix, with gain greater than four orders of magnitude compared with crystalline silicon.

    • Luigi Sirleto
    • , Maria Antonietta Ferrara
    •  & Leonid Khriachtchev
  • Article |

    Developing next generation batteries requires better understanding of the dynamics of electrochemical reactions in working electrodes. Using a transmission electron microscope, Wanget al. develop a means to track the real time flow of lithium atoms in electrodes during the discharge of a functioning electrochemical cell.

    • Feng Wang
    • , Hui-Chia Yu
    •  & Jason Graetz
  • Article
    | Open Access

    Binary mixtures of molecules on the surface of nanoparticles can arrange randomly or into different domains to form Janus, patchy or striped particles. Liuet that NMR can be used to determine the ligand-shell morphology of particles coated with aliphatic and aromatic ligands.

    • Xiang Liu
    • , Miao Yu
    •  & Francesco Stellacci
  • Article |

    The Cooper pairs that losslessly conduct current in a superconductor can be split into two spatially separated but quantum mechanically entangled electrons. In this paper, non-local cross-correlation measurements of pairs split within a superconducting wire indicate the efficiency of this process can approach 100%.

    • Anindya Das
    • , Yuval Ronen
    •  & Hadas Shtrikman
  • Article
    | Open Access

    High-resolution characterisation techniques enable us to better understand the properties of nanoscale materials and devices. By combining electron microscopy and infrared nanoscopy, Stiegleret al.demonstrate a general approach to simultaneously probe the structural, chemical and electronic properties of a nanostructure.

    • J.M. Stiegler
    • , R. Tena-Zaera
    •  & R. Hillenbrand
  • Article |

    Photosynthesis occurs at the thylakoid membrane, which acts as a scaffold, precisely arranging functional proteins and electron carriers. Sunet al.synthesize hollow photosynthetic nanospheres that function as light-harvesting antennae and structured scaffolds that improve photoredox catalysis.

    • Jianhua Sun
    • , Jinshui Zhang
    •  & Xinchen Wang
  • Article
    | Open Access

    Plasmonic nanoparticles are useful as optical sensors, but their spectral resolution is hindered by the linewidth of the plasmon resonance. Schmidtet al. find that coupling this resonance to a microcavity creates hybrid modes with enhanced sensing figure-of-merit and improved frequency resolution.

    • Markus A. Schmidt
    • , Dang Yuan Lei
    •  & Stefan A. Maier
  • Article
    | Open Access

    Microdisk lasers are useful for compact wavelength-scale photonic devices and circuits, but their operation by electrical injection can hamper their optical properties. Kimet al. show that a graphene-contact electrode provides efficient electrical injection while minimising optical losses.

    • Yoon-Ho Kim
    • , Soon-Hong Kwon
    •  & Hong-Gyu Park
  • Article
    | Open Access

    Self-assembly of DNA can provide access to a range of nanoscale structures, but assembly using magnesium has been considered essential. Martin and Dietz report conditions that allow the assembly of templated, multi-layer DNA structures in the presence of monovalent ions, rather than magnesium.

    • Thomas G. Martin
    •  & Hendrik Dietz
  • Article |

    Strain in Si nanostructures is used to achieve higher carrier mobility, making these devices candidates for the next generation of transistors. Minamisawaet al. fabricate silicon nanowires subject to elastic tensile strain up to 4.5%, exceeding the limit achievable with the use of SiGe virtual substrates.

    • R.A. Minamisawa
    • , M.J. Süess
    •  & H. Sigg
  • Article |

    Cavity optomechanics can exploit optical forces to achieve all-optical signal processing, but most schemes are limited to a narrow wavelength range. Using a cavity optomechanical design system with two optical channels, Liet al. show broadband readout and all-optical amplification of radio-frequency signals.

    • Huan Li
    • , Yu Chen
    •  & Mo Li
  • Article |

    Well-defined, monodisperse colloids of semiconducting polymers are required as new photonic and optoelectronic materials. Here, a Suzuki–Miyaura dispersion polymerization is used to produce monodisperse sub-micrometer particles of a range of semiconducting polymers.

    • Alexander J.C. Kuehne
    • , Malte C. Gather
    •  & Joris Sprakel
  • Article |

    Supramolecular interactions allow some small molecules to self-assemble into nanofibres and hydrogels in aqueous environments. Gaoet a hydrogelator that forms fluorescent nanofibres within cells, leading to the visualization of their self-assembly at the endoplasmic reticulum.

    • Yuan Gao
    • , Junfeng Shi
    •  & Bing Xu
  • Article
    | Open Access

    Crystallization of noble metal atoms usually leads to the thermodynamically stable face-centred cubic phase. Sunet al. show that internal strain in silver nanoparticles leads to lattice distortion and a stable body-centred tetragonal phase.

    • Yugang Sun
    • , Yang Ren
    •  & Dean J. Miller
  • Article
    | Open Access

    Downsizing antennas to the nanoscale is a promising way to manipulate light emission from fluorescent sources. Bussonet al. used a short DNA strand to position a lone fluorescent molecule between two gold particles with nanometre resolution, achieving enhanced decay rates and single photon emission.

    • Mickaël P. Busson
    • , Brice Rolly
    •  & Sébastien Bidault
  • Article |

    Controlling the behaviour of single molecules on electrode interfaces is crucial for the development of molecular spintronics. This study reports spin-polarized scanning tunnelling microscopy data of the spin-split molecular orbitals of a single-molecule magnet adsorbed on a cobalt surface.

    • Jörg Schwöbel
    • , Yingshuang Fu
    •  & Roland Wiesendanger
  • Article |

    Molecular systems with rigid macrocyclic backbones self-assemble into synthetic nanopores that mimic the mass-transport characteristics of biological channels. Zhouet al. produce self-assembling hydrophobic nanopores that mediate highly selective transmembrane ion transport and highly efficient transmembrane water permeability.

    • Xibin Zhou
    • , Guande Liu
    •  & Bing Gong
  • Article |

    Single electron pumps have been proposed as potential candidates for redefining the ampere. This study reports measurements of the quantized current flowing through a semiconductor electron pump with a precision that makes a substantial step towards establishing a direct metric for electrical currents.

    • S.P. Giblin
    • , M. Kataoka
    •  & D.A. Ritchie
  • Article
    | Open Access

    Switches made up of single molecules form the basis for the concept of molecular electronics. Miyamachiet al.demonstrate that an iron-based spin crossover molecule can be switched between different spin states, provided it is decoupled from a metallic substrate by a thin insulating layer.

    • Toshio Miyamachi
    • , Manuel Gruber
    •  & Wulf Wulfhekel
  • Article |

    Scanning probe microscopy and related techniques rely on the availability of very sharp tips. Here, a sharpening technique based on field-directed sputtering is demonstrated, resulting in ultrasharp metallic tips for use in scanning tunnelling microscopy as well as atomic-scale lithographic experiments.

    • S.W. Schmucker
    • , N. Kumar
    •  & J.W. Lyding
  • Article |

    Stretchable electronics based on conducting polymers offer new opportunities for designing flexible technologies. Parket al. build three-dimensional nanostructures from elastomers soaked with liquid metal to produce stretchable conductors with greatly improved strain properties over solid films.

    • Junyong Park
    • , Shuodao Wang
    •  & Seokwoo Jeon
  • Article
    | Open Access

    Nanocrystal quantum dots can exhibit photoluminescence blinking, where the intensity of the emitted light fluctuates due to random charging and discharging. Gallandet thick shell nanocrystals and find that the photoluminescence lifetime can also undergo blinking, without intensity changes.

    • Christophe Galland
    • , Yagnaseni Ghosh
    •  & Victor I. Klimov
  • Article |

    Ink-jet printing methods are an attractive approach to nanofabrication, where electrohydrodynamic control allows for flexible and cheap fabrication. Here, a new approach is presented using electrostatic nanodroplet autofocussing to produce high aspect ratio nanoscale structures like plasmonic nanoantennas.

    • P. Galliker
    • , J. Schneider
    •  & D. Poulikakos
  • Article
    | Open Access

    Ultrasmall clusters of atoms form the building blocks of many nanoscale materials. Using a combination of aberration-corrected transmission electron microscopy and numerical simulations, this study uncovers the geometry of these clusters in three dimensions.

    • S. Bals
    • , S. Van Aert
    •  & G. Van Tendeloo
  • Article |

    Devices made up of nanowires offer promise for a range of electronic, photonic and energy applications. Liuet al. fabricate a miniature capacitor by employing a thin layer of Cu2O as a separator between layers of carbon and copper.

    • Zheng Liu
    • , Yongjie Zhan
    •  & Pulickel M. Ajayan
  • Article |

    Three-dimensional optical metamaterials provide a range of exciting features, such as broadband circular dichroism, yet their fabrication is challenging. Here, a broadband optical circular polarizer is presented based on twisted stacks of metasurfaces, avoiding the issues of three-dimensional fabrication.

    • Y. Zhao
    • , M.A. Belkin
    •  & A. Alù
  • Article |

    Strain engineering has been proposed as a promising strategy for manipulating the electronic properties of graphene. This scanning tunnelling microscopy study demonstrates the feasibility of controlling strain patterns in graphene down to the nanoscale.

    • Jiong Lu
    • , A.H. Castro Neto
    •  & Kian Ping Loh
  • Article
    | Open Access

    Micromechanical oscillators present a route to miniaturisation of devices and may be used as frequency references or sensitive sensors, but their small size means that they often behave nonlinearly. Antonioet al. demonstrate frequency stabilisation of nonlinear resonators by coupling two vibrational modes.

    • Dario Antonio
    • , Damián H. Zanette
    •  & Daniel López
  • Article |

    The singular properties of topological insulators are defined by the topological nature of their metallic surface states. This study shows that by doping Bi2Se3nanoribbons with antimony, the transport properties of these surface states are measurable and can be distinguished from the contributions due to the bulk of the samples.

    • Seung Sae Hong
    • , Judy J. Cha
    •  & Yi Cui
  • Article |

    The spin-dependent thermal and electrical transport properties of nanostructures are central for future applications of spintronic devices. Here, Linet al. report an enhanced spin-dependent thermoelectric effect in an Al2O3-based magnetic tunnel junction.

    • Weiwei Lin
    • , Michel Hehn
    •  & Stéphane Mangin
  • Article
    | Open Access

    Single-photon sources are important for quantum optical technologies, although achieving efficient light extraction from them with waveguides is limited in top-down approaches. Reimeret al. show a high extraction efficiency using a bottom-up method to grow quantum dots on the axis of nanowire waveguides.

    • Michael E. Reimer
    • , Gabriele Bulgarini
    •  & Val Zwiller
  • Article |

    Resistive switching devices are promising candidates for non-volatile memories. Usingin-situ and ex-situ transmission electron microscopy, Yang et al. present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.

    • Yuchao Yang
    • , Peng Gao
    •  & Wei Lu
  • Article
    | Open Access

    Advances in nanoelectromechanical systems have brought improvements in the quality factor of nanomechanical resonators, yet few low-loss transduction schemes exist at high temperature. Using non-dissipative dielectric coupling to a microwave cavity, Faustet al. present an integrated nanomechanical transducer.

    • T. Faust
    • , P. Krenn
    •  & E.M. Weig
  • Article |

    Imaging and tracking the motion of single molecules on cell plasma membranes requires high spatial resolution in three dimensions. Honget al. develop a plasmonic ruler based on the fluorescence enhancement of carbon nanotubes on a gold plasmonic substrate, allowing the observation of nanotube endocytosis in three dimensions.

    • Guosong Hong
    • , Justin Z. Wu
    •  & Hongjie Dai
  • Article
    | Open Access

    Multicompartment micelles can be assembled from block copolymers but it is difficult to manipulate their hierarchical superstructures using straightforward concepts. Here, methods are developed that involve the pre-assembly of subunits for the structurally controlled production of micelles.

    • André H. Gröschel
    • , Felix H. Schacher
    •  & Axel H.E. Müller
  • Article
    | Open Access

    Minimising reflection from the interface between materials is an important goal for optical devices such as solar cells or photodetectors. Spinelliet al. show almost total loss of reflection over a broad spectral range from a silicon surface using periodic arrays of sub-wavelength silicon nanocylinders.

    • P. Spinelli
    • , M.A. Verschuuren
    •  & A. Polman