Nanoscience and technology

  • Article
    | Open Access

    Understanding the interaction between spin and valley degrees of freedom in graphene-based quantum dots underpins their applications in electronics and quantum information. Here, the authors study the low-energy spectrum and resolve the spin-valley coupling in single-electron quantum dots in bilayer graphene.

    • L. Banszerus
    • , S. Möller
    •  & C. Stampfer
  • Article
    | Open Access

    Artificial sodium channels open up the way to new separation technologies but remains highly challenging. In this work, the authors report an artificial sodium-selective ionic device, built on porous crown-ether crystals with a sodium ion selectivity against calcium ions exceeding that one of biological ion channel counterparts.

    • Tingyan Ye
    • , Gaolei Hou
    •  & Jun Gao
  • Article
    | Open Access

    The superior density of passive analog memristive devices can potentially enable efficient implementation of very large scale neural networks; however, device to device variability is currently too large to take advantage of this. Here, Kim et al demonstrate an impressive reduction in this variability, with a large passive memristive array.

    • H. Kim
    • , M. R. Mahmoodi
    •  & D. B. Strukov
  • Article
    | Open Access

    Controlling the threshold response in synthetic molecular structures is challenging. Here, the authors report on the buckling of ring-shaped DNA origami structures into twisted architectures via mechanical instability, induced by DNA intercalators.

    • Young-Joo Kim
    • , Junho Park
    •  & Do-Nyun Kim
  • Article
    | Open Access

    Similarly to graphene, attempts to fabricate phosphorene by epitaxy or starting from a few layers of bulk black phosphorus have failed so far. Here, the authors present a controllable bottom-up approach to grow atomically thin, crystalline 1D flat phosphorus chains on a Ag(111) substrate.

    • Wei Zhang
    • , Hanna Enriquez
    •  & Hamid Oughaddou
  • Article
    | Open Access

    Electron beam lithography (EBL) is renowned to provide fabrication resolution in the deep nanometer scale but their incapability of arbitrary 3D nanofabrication poses a major limitation to the technique. Here, the authors demonstrate a manufacturing technique of functional 3d nanostructures at a resolution of sub-15 nm using voltage-regulated 3d EBL.

    • Nan Qin
    • , Zhi-Gang Qian
    •  & Tiger H. Tao
  • Article
    | Open Access

    Integration and communication of distinct chemical reaction networks is a biological strategy for controlling dynamics of hierarchical structures. Here, the authors report ATP-fuelled autonomous DNA nanotube assembly regulated by DNA strand displacement reactions, which are induced and controlled by an upstream enzyme reaction network of concurrent ATP-mediated ligation and restriction of DNA components.

    • Jie Deng
    •  & Andreas Walther
  • Article
    | Open Access

    Efficient conversion of microwave photons into electrical current would enable several applications in quantum technologies, especially if one could step outside of the gated-time regime. Here, the authors demonstrate continuous-time microwave photoconversion in double quantum dots with 6% efficiency.

    • Waqar Khan
    • , Patrick P. Potts
    •  & Ville F. Maisi
  • Article
    | Open Access

    Mechanical motions in hybrid sp2/sp3 -hybrid nanocarbon peapods might lead to promising materials applications, but have been insufficiently explored. Here the authors demonstrate that a diamondoid molecule trapped inside a carbonaceous cylinder undergoes solid-state rotations at terahertz frequencies.

    • Taisuke Matsuno
    • , Seiya Terasaki
    •  & Hiroyuki Isobe
  • Article
    | Open Access

    The effect of strain-induced pseudo-magnetic fields on the optical properties of graphene has not been experimentally explored yet. Here, pseudo-magnetic fields reaching values of 100 T are shown to increase by more than an order of magnitude the relaxation lifetime of hot carriers in periodically strained graphene.

    • Dong-Ho Kang
    • , Hao Sun
    •  & Donguk Nam
  • Article
    | Open Access

    Skyrmions are a type of topological spin texture that great potential across a wide variety of technological applications. Here, Yu et al. study the thermally driven motion of Skyrmions and find a minimum temperature gradient for the motion of skyrmions two orders of magnitude smaller than for domain walls.

    • Xiuzhen Yu
    • , Fumitaka Kagawa
    •  & Yoshinori Tokura
  • Article
    | Open Access

    The miniaturization of biocompatible microsystems that enable self-sufficiency and autarkic operations is ever increasing. Here, the authors demonstrate a robust integratable nano-biosupercapacitor with enhanced performance in complex biological fluids, thus enabling autarkic sensor operation in blood.

    • Yeji Lee
    • , Vineeth Kumar Bandari
    •  & Oliver G. Schmidt
  • Article
    | Open Access

    The morphology of semicrystalline plastics on the 1-100 μm scale, such as spherulites, strongly affect mechanical and other properties of the material but currently only 2D imaging techniques are available. Here, the authors use fluorescence labels and confocal microscopy to visualize the internal structure of neat polymers and composites in 3D and reveal unsuspected morphologies.

    • Shu-Gui Yang
    • , Zhen-Zhen Wei
    •  & Goran Ungar
  • Article
    | Open Access

    Here, the authors investigate the long-range interaction and coalescence mechanism of water and ethanol nanopockets encapsulated in twisted bilayer graphene, showing the complete recovery of moiré patterns after the motion of the contaminants.

    • Yuan Hou
    • , Zhaohe Dai
    •  & Zhong Zhang
  • Article
    | Open Access

    Developments in the field of two-dimensional van der Waals materials offer big promise for device applications. This study reports a first-principle investigation on the dielectric properties of 32 exfoliable two-dimensional layered dieletrics for assessing the prospects of these materials in devices.

    • Mehrdad Rostami Osanloo
    • , Maarten L. Van de Put
    •  & William G. Vandenberghe
  • Article
    | Open Access

    Surface plasmons have unique physical properties that make them also interesting for technology. Here, the authors observe plasmons in mixed-dimensional heterostructures that can be highly modulated with electrostatic gating, which may be explained by plasmon hybridization

    • Sheng Wang
    • , SeokJae Yoo
    •  & Feng Wang
  • Article
    | Open Access

    Synthetic anti-ferromagnets, where two ferromagnetic layers are coupled anti-ferromagnetically via a spacer, are known for their very large current-induced domain wall velocities. Here, Guan et al show that the velocity of the domain walls in synthetic anti-ferromagnetic nanowires can be tuned over a wide range due to reversible oxidization via ionic liquid gating.

    • Yicheng Guan
    • , Xilin Zhou
    •  & Stuart S. P. Parkin
  • Article
    | Open Access

    The authors introduce an analytical approach for quantitative analysis of 3D atom dynamics during electron microscopy. They image a Co-Mo-S nanocrystal with 1.5 Å resolution, and observe chemical transformations caused by beam-stimulated vibrations.

    • Fu-Rong Chen
    • , Dirk Van Dyck
    •  & Stig Helveg
  • Article
    | Open Access

    Spatiotemporal dynamic of charge carriers is commonly studied with optical or photoconductivity measurements, yet these techniques come with their own limitations. To circumvent these limits, the authors probe the free-carrier diffusion dynamics of microsecond lifetimes via laser-illuminated microwave impedance microscopy.

    • Xuejian Ma
    • , Fei Zhang
    •  & Keji Lai
  • Article
    | Open Access

    Synthetic DNA constructs can to used to recognise and respond to input signals. Here the authors present complex DNA nanostructures with toehold-free strand displacement for generation of ON/OFF switches and Boolean gates.

    • Hong Kang
    • , Tong Lin
    •  & Bryan Wei
  • Article
    | Open Access

    Dissipative self-assembly, which requires a continuous supply of fuel to maintain the assembled states far from equilibrium, is the foundation of biological systems but it remains a challenge to introduce light as fuel into artificial dissipative self-assemblies. Here, the authors report an artificial dissipative self-assembly system that is constructed from light-induced amphiphiles.

    • Xu-Man Chen
    • , Xiao-Fang Hou
    •  & Quan Li
  • Article
    | Open Access

    A variety of artificial cells springs from the functionalization of liposomes with proteins but these models suffer from low durability without repair and replenishment mechanisms. Here, the authors show that synthetic amphiphile membranes undergo SNARE-mediated fusion, and determine bending rigidity and pore edge tension as key parameters for fusion.

    • Lado Otrin
    • , Agata Witkowska
    •  & Tanja Vidaković-Koch
  • Article
    | Open Access

    Controlling localization of multiple metal nanoparticles on a single support is at the cutting edge of designing innovatory cascade catalysts. Here, the authors report a multicompartmentalized mesoporous organosilica to spatially position different metal nanoparticles in intimate proximity for efficient sequential hydrogenation reactions.

    • Houbing Zou
    • , Jinyu Dai
    •  & Hengquan Yang
  • Article
    | Open Access

    Advanced fabrication techniques enable a wide range of quantum devices, such as the realization of a topological qubit. Here, the authors introduce an on-chip fabrication technique based on shadow walls to implement topological qubits in an InSb nanowire without fabrication steps such as lithography and etching.

    • Sebastian Heedt
    • , Marina Quintero-Pérez
    •  & Leo P. Kouwenhoven
  • Article
    | Open Access

    Exciton in two-dimensional perovskite is strongly influenced by dielectric confinement of the organic components. Here, the authors employ femtosecond laser to induce ultrashock pressure to investigate how the structural changes and the reduction of dielectric confinement affects exciton behaviour and dynamic.

    • Chunpeng Song
    • , Huanrui Yang
    •  & Gary J. Cheng
  • Article
    | Open Access

    The typical approach to electronics is to integrate sensors, power units, and controlling components on a printed circuit board (PCB). Here, the authors demonstrate a self-powered and fully integrated combination of sensors and controlling components that is woven, rather than integrated onto a PCB, allowing for wearable health monitoring.”

    • Yuxin Yang
    • , Xiaofei Wei
    •  & Xing Fan
  • Article
    | Open Access

    Understanding nanomaterials interactions with complement is important for a number of applications. Here, the authors study the interaction of sub 6 nm dendrimers with complement and show the small dendrimers escape complement activation but do interact with IgM to trigger lectin-pathway complement activation.

    • Lin-Ping Wu
    • , Mario Ficker
    •  & Seyed M. Moghimi
  • Article
    | Open Access

    Atomic diffusion is a powerful tool for the synthesis of heterostructures, even though controlled atomic diffusion is difficult to achieve. Here, the authors control solid-solid atomic diffusion between an Ag nanowire and a Te nanowire, producing 1D heterostructures by applying an electrical bias inside a TEM.

    • Hui Zhang
    • , Tao Xu
    •  & Litao Sun
  • Article
    | Open Access

    Lipid membrane disruption is often associated with disease but is also essential to a range of biosensing and therapeutic techniques. Here, the authors report on the development of DNA-based particles that, upon exposure to an external cue, can aggregate, disrupt lipid membranes, and arrest the motion of bacteria.

    • Michal Walczak
    • , Ryan A. Brady
    •  & Lorenzo Di Michele
  • Article
    | Open Access

    An avalanche photodiode is an opto-electronic amplifier that uses impact ionization to provide enhanced sensitivity at the expense of excess noise. In this manuscript, the authors demonstrate that a small amount of Bismuth (Bi) in Gallium Arsenide (GaAs) avalanche photodiodes significantly reduces this excess noise.

    • Yuchen Liu
    • , Xin Yi
    •  & John P. R. David
  • Article
    | Open Access

    High temperature usually decreases the output of triboelectric nanogenerator because of the increased dissipation of triboelectric charges. Here, the authors design and fabricate a temperature difference triboelectric nanogenerator to enhance the electrical output in high temperature environment.

    • Bolang Cheng
    • , Qi Xu
    •  & Yong Qin
  • Article
    | Open Access

    Graphene is the archetype for realizing two-dimensional topological phases of matter. Here, the authors introduce a new topological classification connected to polarization transport, where the topological number is revealed in the spatiotemporal dispersion of the susceptibility tensor.

    • Todd Van Mechelen
    • , Wenbo Sun
    •  & Zubin Jacob
  • Article
    | Open Access

    The authors demonstrate efficient excitation of nanodiamonds by a focused beam of helium ions, resulting in ionoluminescence. They use this for quantification and correlative localization of single particles within a whole cell at sub-30 nm resolution, and investigate nanodiamond radiosensitisation effects.

    • Zhaohong Mi
    • , Ce-Belle Chen
    •  & Andrew A. Bettiol
  • Article
    | Open Access

    The properties of graphene/polymer composites are usually limited by the use of discontinuous graphene flakes. Here, the authors report a fabrication method to realise continuous cm-scale graphene/polymer nanolaminates with enhanced electromagnetic interference shielding effectiveness, conductivity and mechanical properties.

    • Christos Pavlou
    • , Maria Giovanna Pastore Carbone
    •  & Costas Galiotis
  • Article
    | Open Access

    Ligand-oligonucleotide interactions can integrate both small molecules and proteins into nucleic acid-based circuits. Here the authors design ligand-aptamer complexes to control strand-displacement reactions for versatile ligand transduction.

    • Qiu-Long Zhang
    • , Liang-Liang Wang
    •  & Liang Xu
  • Article
    | Open Access

    Semiconductor surface states often stand in the way of device performance, but here, the authors take advantage of them for wavelength conversion. They present a compact, passive conversion device insensitive to optical alignment by using plasmon-coupled surface states that enable the efficient conversion without nonlinear phenomena.

    • Deniz Turan
    • , Ping Keng Lu
    •  & Mona Jarrahi
  • Article
    | Open Access

    Self-assembling peptides have a range of potential applications but developing self-assembling sequences can be challenging. Here, the authors report on a one-bead one-compound combinatorial library where fluorescence is used to detect the potential for self-assembly and identified candidates are evaluated.

    • Pei-Pei Yang
    • , Yi-Jing Li
    •  & Kit S. Lam
  • Article
    | Open Access

    It is challenging to control the growth of colloidal III-V quantum dots, due to complex reaction pathways. Here, the authors isolate a single-crystalline tetrapod species as a late-stage intermediate and use it as a tailored-growth platform in colloidal synthesis.

    • Youngsik Kim
    • , Hyekyoung Choi
    •  & Sohee Jeong