Nanophotonics and plasmonics articles within Nature Physics


  • News & Views |

    A single light-emitting dye molecule precisely placed within the tiny gap of a metal nanodimer boosts light–matter coupling — a step closer to the development of quantum devices operating at room temperature.

    • Rohit Chikkaraddy
  • News & Views |

    When photons impinge on a material, free electrons can be created by the photoelectric effect. The emitted electron current usually fluctuates with Poisson statistics, but if squeezed quantum light is applied, the electrons bunch up.

    • Alfred Leitenstorfer
    •  & Peter Baum
  • Article |

    Photoemission experiments demonstrate that the photon number statistics of the exciting light can be imprinted on the emitted electrons, allowing the controlled generation of classical or non-classical electron number statistics of free electrons.

    • Jonas Heimerl
    • , Alexander Mikhaylov
    •  & Peter Hommelhoff
  • News & Views |

    Even by shining classical light on a single opening, one can perform a double-slit experiment and discover a surprising variety of quantum mechanical multi-photon correlations — thanks to surface plasmon polaritons and photon-number-resolving detectors.

    • Martijn Wubs
  • Article |

    Most applications of surface plasmons are based on their near-field properties. These properties are now shown to be governed by nonclassical scattering between multiparticle plasmonic subsystems.

    • Mingyuan Hong
    • , Riley B. Dawkins
    •  & Omar S. Magaña-Loaiza
  • News & Views |

    A decade ago, the anti-laser made waves as a new type of perfect absorber that functions as a one-way trap door for light. Experiments have now demonstrated the control of light without absorbing it.

    • A. Douglas Stone
  • News & Views |

    Measuring the transmission matrix of disordered structures has so far been limited to the domain of linear systems. Now it has been measured for nonlinear disorder, with exciting implications for information capacity.

    • Sushil Mujumdar
  • Research Briefing |

    Time crystals are a new state of matter. Conventional crystal properties are periodic in space, while the properties of a time crystal are periodic in time. A continuous quantum time crystal has recently been realized, and now, using optically driven many-body interactions in a nano-mechanical photonic metamaterial, a classical continuous time crystal has been created.

  • Article
    | Open Access

    So far, a continuous time crystal has only been implemented on a quantum system. Optically driven many-body interactions in a nanomechanical photonic metamaterial now allow the realization of a classical continuous time crystal.

    • Tongjun Liu
    • , Jun-Yu Ou
    •  & Nikolay I. Zheludev
  • Article |

    A temporal version of Young’s double-slit experiment shows characteristic interference in the frequency domain when light interacts with time slits produced by ultrafast changes in the refractive index of an epsilon-near-zero material.

    • Romain Tirole
    • , Stefano Vezzoli
    •  & Riccardo Sapienza
  • Letter |

    Plasmonics allows precise engineering of light–matter interactions and is the driver behind many optical devices. The local observation of a plasmonic quantum wave packet is a step towards bringing these functionalities to the quantum regime.

    • Sebastian Pres
    • , Bernhard Huber
    •  & Tobias Brixner
  • Letter |

    Efficient interactions between two photons is a challenging requirement for quantum information processing. A quantum dot coupled to a waveguide produces strong interactions that can induce photon correlations and reshape two-photon wavepackets.

    • Hanna Le Jeannic
    • , Alexey Tiranov
    •  & Peter Lodahl
  • News & Views |

    It has long been assumed that the quantum statistics of light are preserved when photons interact with plasmons. An analysis of the scattering process shows that this is not always the case, as light can mix and match different plasmonic pathways.

    • Mark Tame
  • News & Views |

    Integrating quantum technology with existing telecom infrastructure is hampered by a mismatch in operating frequencies. An optomechanical resonator now offers a strain-mediated spin–photon interface for long-distance quantum networks.

    • Lilian Childress
    •  & Jack Sankey
  • Article |

    Quantum networks require a connection between quantum memories and optical links, which often operate in different frequency ranges. An optomechanical device exploiting the strain dependence of a colour-centre spin provides such a spin–optics interface at room temperature.

    • Prasoon K. Shandilya
    • , David P. Lake
    •  & Paul E. Barclay
  • News & Views |

    The virtual photons that are exchanged when a free-electron vortex beam interacts with a nanoscopic target unlock an explicit connection between polarized optical spectroscopy and the inelastic scattering of scalar electron waves.

    • David J. Masiello
  • Article |

    The functionality of electron energy loss spectroscopy can be extended to include a polarization analogue constructed via the dipole transition vector between two electronic states, bringing it closer to its optical counterpart.

    • Hugo Lourenço-Martins
    • , Davy Gérard
    •  & Mathieu Kociak
  • Article |

    When interfacing a graphene layer with a thin solid emitter, the quantum plasmonic vacuum allows each solid electron to access all unoccupied valence states through the nonlocality of their light-matter interaction, creating ultra-strong coupling alongside mass and bandgap renormalization.

    • Yaniv Kurman
    •  & Ido Kaminer
  • Article |

    By exploiting the long-lived phonon modes in nanoscale mechanical resonators, a quantum memory that operates around the standard telecom wavelength of 1,550 nm is realized on a silicon platform.

    • Andreas Wallucks
    • , Igor Marinković
    •  & Simon Gröblacher
  • Article |

    Single-cycle interferometric autocorrelation measurements of electrons tunnelling across the gap of a plasmonic bowtie antenna and quantitative models provide insight into the physical interactions that drive the electron transfer.

    • Markus Ludwig
    • , Garikoitz Aguirregabiria
    •  & Daniele Brida
  • Article |

    Vacuum fluctuations in the vicinity of nanophotonic structures can lead to the conversion of a free electron into a polariton and a high-energy photon, whose frequency can be controlled by the electromagnetic properties of the nanostructure.

    • Nicholas Rivera
    • , Liang Jie Wong
    •  & Ido Kaminer
  • News & Views |

    Floquet engineering harnesses alternating fields to create a topological band structure in an otherwise ordinary material. These fields drive plasmons that can spontaneously split into chiral circulating modes and induce magnetization.

    • Luis E. F. Foa Torres
  • Letter |

    The authors predict that Berry flux can be spontaneously generated in a metal by plasmonic oscillations in response to illumination by light. They show that this topological ‘Berryogenesis’ can work in graphene.

    • Mark S. Rudner
    •  & Justin C. W. Song
  • Article |

    The Kerr and Faraday effects enable routing of light in an applied magnetic field. Now a new class of magneto-optical phenomena is proposed and demonstrated in which light emission is controlled perpendicular to the external magnetic field.

    • F. Spitzer
    • , A. N. Poddubny
    •  & M. Bayer
  • Letter |

    The authors theoretically investigate a novel form of a Doppler effect in homogeneous systems with positive refractive index that occurs under certain conditions. It is suggested that this Doppler effect can be experimentally separated from other Doppler effects by using polaritons such as those found in graphene.

    • Xihang Shi
    • , Xiao Lin
    •  & Baile Zhang
  • Article |

    In a hot, under-dense plasma, eight input beams are combined into a single, well-collimated beam, whose energy is more than triple than that of any incident beam. This shows how nonlinear interactions in plasmas can produce optics beams at much higher intensity than possible in solids.

    • R. K. Kirkwood
    • , D. P. Turnbull
    •  & B. E. Blue
  • Letter |

    In different applications the Gouy phase is used to describe broadband lasers, but new 3D measurements of the spatial dependence of a focused laser pulse show serious deviations from the Gouy phase.

    • Dominik Hoff
    • , Michael Krüger
    •  & Peter Hommelhoff
  • News & Views |

    The shorter the antenna, the higher the frequency — so what happens when nanoantennas hit optical frequencies? One answer may lead to high-harmonic generation without the need for high-powered lasers.

    • Alexandra Landsman
  • Letter |

    Photoemission is usually driven by the energy of the illuminating laser pulses, but in the strong-field regime, the photoemission from an array of plasmonic nanoparticles is shown to be controlled by the light’s electric field.

    • William P. Putnam
    • , Richard G. Hobbs
    •  & Franz X. Kärtner
  • Research Highlights |

    • Luke Fleet
  • Letter |

    The strong confinement of plasmons in graphene makes them interesting for practical applications, but also difficult to excite. An all-optical technique can excite plasmons in graphene over a range of frequencies.

    • T. J. Constant
    • , S. M. Hornett
    •  & E. Hendry
  • Article |

    The relaxation processes of light-emitting excited ions are tunable, but electrical control is challenging. It is now shown that graphene can be used to manipulate the optical emission and relaxation of erbium near-infrared emitters electrically.

    • K. J. Tielrooij
    • , L. Orona
    •  & F. H. L. Koppens
  • News & Views |

    Light emitted near an optical waveguide is captured and equally split into two modes with opposite directions of propagation. By controlling the dipole spin of the emitter, it is possible to break this symmetry and select only one direction.

    • Lorenzo Marrucci
  • Article |

    Coupling the fluorescence of cold atoms to plasmons propagating on a gold surface offers a means of controlling the radiation from optical emitters without the need for a cavity.

    • Christian Stehle
    • , Claus Zimmermann
    •  & Sebastian Slama