Materials science

  • Article
    | Open Access

    Current designs of thermal switches are limited by a lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here the authors report a continuously tunable, wide-range, fast, and cost effective thermal switching approach that is demonstrated using compressible graphene composite foams.

    • Tingting Du
    • , Zixin Xiong
    •  & Xiulin Ruan
  • Article
    | Open Access

    Permanently retaining liquid crystalline blue phases in a solid matrix warrants many prospective applications in photonics. Schlafmann and White are able to make a blue phase rubber that retains a crystalline structure upon deformation and responds with angle-dependent color changes.

    • Kyle R. Schlafmann
    •  & Timothy J. White
  • Article
    | Open Access

    Wearable polymer ultraviolet (UV) detectors seriously suffer from slow response time. Here, the authors propose a UV illuminance-mechanical stress-electric signal conversion based on well-defined ionic liquid-containing liquid crystalline polymer and highly elastic polyurethane composite fabrics, to achieve a robust UV monitoring and shielding device with a fast response time of 5 s.

    • Xiaoxiong Zheng
    • , Yining Jia
    •  & Aihua Chen
  • Article
    | Open Access

    Aggregation-induced emission (AIE) fluorescence probes are indispensable for biomedical imaging, however, interference with tissue autofluorescence results in low signal-to-noise ratio limiting the development of bioimaging with AIE materials. Here the authors develop AIEgen room-temperature phosphors with long emission lifetimes efficiently eliminating intereference with the background signal in imaging.

    • Jianhui Yang
    • , Yahui Zhang
    •  & Xin Zhang
  • Article
    | Open Access

    Exciton in two-dimensional perovskite is strongly influenced by dielectric confinement of the organic components. Here, the authors employ femtosecond laser to induce ultrashock pressure to investigate how the structural changes and the reduction of dielectric confinement affects exciton behaviour and dynamic.

    • Chunpeng Song
    • , Huanrui Yang
    •  & Gary J. Cheng
  • Article
    | Open Access

    Suppressing phase transitions is crucial for the layered lithium/sodium transition metal oxide cathodes in batteries. Here, the authors report a water-mediated strategy to mitigate the phase transitions and boost electrochemical performances of manganese-based layered cathodes for cost-effective Na-ion batteries.

    • Wenhua Zuo
    • , Xiangsi Liu
    •  & Yong Yang
  • Article
    | Open Access

    The orientation of polymer chains in the corona of polymer-grafted nanoparticles has never been measured. Here, the authors use polarized resonant soft X-ray scattering to measure local chain orientation in polystyrene grafted gold nanoparticles and quantify the thickness of the anisotropic region of the corona as well as the extent of chain orientation within it.

    • Subhrangsu Mukherjee
    • , Jason K. Streit
    •  & Dean M. DeLongchamp
  • Article
    | Open Access

    Pulsed operation of perovskite light-emitting diodes is of particular importance in display and visible light communication, yet the ionic behaviour under this mode is not well-understood. Here, the authors reveal that the transient electroluminescence intensity increases with increasing pulse width as the result of accumulation of mobile ions at the interfaces.

    • Naresh Kumar Kumawat
    • , Wolfgang Tress
    •  & Feng Gao
  • Article
    | Open Access

    The typical approach to electronics is to integrate sensors, power units, and controlling components on a printed circuit board (PCB). Here, the authors demonstrate a self-powered and fully integrated combination of sensors and controlling components that is woven, rather than integrated onto a PCB, allowing for wearable health monitoring.”

    • Yuxin Yang
    • , Xiaofei Wei
    •  & Xing Fan
  • Article
    | Open Access

    Broad-band emission of self-trapped exciton in low-dimensional perovskite is prospective for white LED, yet rational design new white perovskite remains challenge. Here, the authors develop an atom-substituting strategy to trigger exciton self-tapping in perovskites and reveal the mechanism behind.

    • Mingming Zhang
    • , Lili Zhao
    •  & Jun Xing
  • Article
    | Open Access

    Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL) has attracted interest because it is biorenewable and exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). Here the authors report the synthesis of well-defined PMMBL-based ABA tri-block copolymers, enabled by dual-initiating and living frustrated Lewis pairs, which have superior mechanical properties compared to those of PMMA-based tri-BCPs.

    • Yun Bai
    • , Huaiyu Wang
    •  & Eugene Y.-X. Chen
  • Article
    | Open Access

    Refractory high entropy alloys hold big promise for elevated-temperature applications. Here the authors investigate the influence of short-range order on the mobility of dislocations in high-entropy alloys by large-scale molecular dynamics simulation based on a machine-learning interatomic potential.

    • Sheng Yin
    • , Yunxing Zuo
    •  & Robert O. Ritchie
  • Article
    | Open Access

    Thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) rely on high triplet energy interlayers to confine excitons, which results in reduced performance. Here, the authors report high-performance blue TADF-OLEDs with below bandgap electroluminescence.

    • Maria Vasilopoulou
    • , Abd. Rashid bin Mohd Yusoff
    •  & Nicola Gasparini
  • Article
    | Open Access

    Deactivation of supported metal catalysts via thermally induced sintering is a major concern in the catalysis community. Here, the authors demonstrate that enlarging particle distance to over the critical distance could suppress the particle coalescence greatly up to 900 °C.

    • Peng Yin
    • , Sulei Hu
    •  & Hai-Wei Liang
  • Article
    | Open Access

    Though bound states in the continuum (BICs) in acoustic systems are attractive for acoustic resonators design, acoustic BICs typically show low Q-factor. Here, the authors report a high performance open acoustic resonator that supports symmetry-protected, Friedrich-Wintgen and mirror symmetry-induced BICs.

    • Lujun Huang
    • , Yan Kei Chiang
    •  & Andrey E. Miroshnichenko
  • Article
    | Open Access

    A good way to identify microscopic conduction regimes where current flow deviates from Ohm’s law is still lacking. Here, the authors identify Sondheimer oscillations as a quantitative probe of the length scale of relaxing electron scattering in studying the non-ohmic electron flow of WP2 crystals.

    • Maarten R. van Delft
    • , Yaxian Wang
    •  & Philip J. W. Moll
  • Article
    | Open Access

    Multidentate molecular additives are widely used to passivate perovskite, yet the role of chelate effect is still unclear. Here, the authors investigate a wide range of additives with different coordination number and functional moieties to establish correlation between coordination affinity and perovskite crystallisation dynamics.

    • Yatao Zou
    • , Pengpeng Teng
    •  & Feng Gao
  • Article
    | Open Access

    One-dimensional van der Waals (1D vdW) materials derive interesting behaviour from dimensional confinement. Here the authors study a 1D vdW semiconductor, fibrous red phosphorous, and observe exceptional optical properties of large optical anisotropy and high photoluminescence.

    • Luojun Du
    • , Yanchong Zhao
    •  & Zhipei Sun
  • Article
    | Open Access

    Realizing an artificial camouflage device with a high spatial resolution by adapting to the surrounding environment in real-time is a challenging task, mainly associated with device fabrication and integration with sensor and control circuits. To overcome these limitations, the authors utilize thermochromic liquid crystal ink that reacts to the feedback control system of the vertically stacked silver nanowire heater.

    • Hyeonseok Kim
    • , Joonhwa Choi
    •  & Seung Hwan Ko
  • Article
    | Open Access

    Graded bulk-heterojunction organic solar cell with well-defined vertical phase separation has the potential to surpass the classical counterpart, thus the optimisation of this structure is crucial. Here, the authors reveal solvent selection strategies for optimising morphology of the structure, enabling efficient, eco-friendly, and scalable solar cells.

    • Ying Zhang
    • , Kuan Liu
    •  & Gang Li
  • Article
    | Open Access

    Changing the propulsion of simple artificial colloidal microswimmers usually proceeds by globally tuning the strength of the driving mechanism. Alvarez et al. implement an independent reconfiguration scheme, bringing small active particles one step closer to adaptive, autonomous behaviour.

    • L. Alvarez
    • , M. A. Fernandez-Rodriguez
    •  & Lucio Isa
  • Article
    | Open Access

    Though shape-changing devices are promising for future haptic displays, existing designs fail to provide smooth surfaces for the user during tactile exploration. Here, the authors utilize flexible auxetic structures to realize shape displays with smooth surfaces and different Gaussian curvatures.

    • Anthony Steed
    • , Eyal Ofek
    •  & Mar Gonzalez-Franco
  • Article
    | Open Access

    An avalanche photodiode is an opto-electronic amplifier that uses impact ionization to provide enhanced sensitivity at the expense of excess noise. In this manuscript, the authors demonstrate that a small amount of Bismuth (Bi) in Gallium Arsenide (GaAs) avalanche photodiodes significantly reduces this excess noise.

    • Yuchen Liu
    • , Xin Yi
    •  & John P. R. David
  • Article
    | Open Access

    Maragoni microswimmers show the advantage of self-propulsion but their development is limited by fabrication techniques. Here, the authors use a photopatterning method which allows for a high throughput production of maragoni microswimmers with multiple functional parts and distinct materials properties.

    • Yeongjae Choi
    • , Cheolheon Park
    •  & Wook Park
  • Article
    | Open Access

    Sensing mechanical signals is an important aspect for a range of applications of E-skins. Here, the authors report on the creation of deforming iontronic sensing structures which can use ionic transport through tissues to create a simple and sensitive E-skin for sensing touch, pulse and motion demonstrating application.

    • Pang Zhu
    • , Huifeng Du
    •  & Chuan Fei Guo
  • Article
    | Open Access

    Electrochemiluminescence (ECL) plays a key role in analysis and sensing but its application is limited by a lack of highly tunable luminophores. Here, the authors demonstrate the design of high efficient ECL luminophores of covalent organic frameworks (COFs) in aqueous media by simultaneously restricting the donor and acceptor to the COFs’ electron configurations and constructing charge transport networks through olefin linkages.

    • Ya-Jie Li
    • , Wei-Rong Cui
    •  & Jian-Ding Qiu
  • Article
    | Open Access

    Ferroelectric liquid crystals (FLCs) have faster optical response times than nematic crystals, but they are also less robust to external shock. Here the authors develop an FLC geometry that reduces the sensitivity to external disruption through self-healing, making them more stable for applications.

    • Peter J. M. Wyatt
    • , James Bailey
    •  & J. Cliff Jones
  • Article
    | Open Access

    Graphene is the archetype for realizing two-dimensional topological phases of matter. Here, the authors introduce a new topological classification connected to polarization transport, where the topological number is revealed in the spatiotemporal dispersion of the susceptibility tensor.

    • Todd Van Mechelen
    • , Wenbo Sun
    •  & Zubin Jacob
  • Article
    | Open Access

    Precipitation hardening, used as an effective strengthening strategy in various alloy systems, has been usually achieved by coherent precipitates. Here, the authors develop ultrastrong ductile alloys employing structurally dissimilar semicoherent precipitates by shear band-driven precipitation.

    • Tae Jin Jang
    • , Won Seok Choi
    •  & Seok Su Sohn
  • Article
    | Open Access

    Zero thermal expansion alloys have unique dimensional stability but suffer from inherent brittleness and compositional sensitivity. Here the authors present the one-step eutectic reaction approach to produce a dual-phase alloy with an axial zero expansion and promising mechanical properties.

    • Chengyi Yu
    • , Kun Lin
    •  & Xianran Xing
  • Article
    | Open Access

    Appropriate triboelectric material selection is vital to for high performance direct current triboelectric nanogenerator (DC-TENG). The authors here provide effective selection rules as guideline to select triboelectric materials for DC-TENG to reduce the trial-and-error cost for DC-TENG’s research.

    • Zhihao Zhao
    • , Linglin Zhou
    •  & Zhong Lin Wang
  • Article
    | Open Access

    Despite advances on fabrication of stretchable interconnects, realizing functional electronics with integrated solid-state technology (SST) remains a challenge. Here, the authors report a reversible Pol-Gel transition method for fabrication of liquid-metal based, chip-integrated, printed stretchable circuits.

    • Pedro Alhais Lopes
    • , Bruno C. Santos
    •  & Mahmoud Tavakoli
  • Article
    | Open Access

    Honeycomb layered oxides are an emerging class of materials with peculiar physicochemical properties. Here, the authors report the synthesis and electrochemical energy storage characterisations of a mixed-alkali honeycomb layered oxide material capable of storing Na and K ions simultaneously.

    • Titus Masese
    • , Yoshinobu Miyazaki
    •  & Tomohiro Saito
  • Article
    | Open Access

    The properties of graphene/polymer composites are usually limited by the use of discontinuous graphene flakes. Here, the authors report a fabrication method to realise continuous cm-scale graphene/polymer nanolaminates with enhanced electromagnetic interference shielding effectiveness, conductivity and mechanical properties.

    • Christos Pavlou
    • , Maria Giovanna Pastore Carbone
    •  & Costas Galiotis
  • Article
    | Open Access

    Understanding correlations between molecular structures and macroscopic properties is critical in realising highly efficient organic photovoltaics. Here, the authors conduct a comprehensive study based on four non-fullerene acceptors revealing how the extended conjugation, asymmetric terminals and alkyl chain length can affect device performance.

    • Shuixing Li
    • , Lingling Zhan
    •  & Hongzheng Chen
  • Article
    | Open Access

    Silica formation in diatoms is of interest for a range of different subjects from biomimetics to oceanography. Here the authors study the formation of silicified extensions in diatoms and find that unlike cell wall elements, that form in the cytoplasm, the extensions have a different formation mechanism outside the cytoplasm.

    • Boaz Mayzel
    • , Lior Aram
    •  & Assaf Gal
  • Article
    | Open Access

    The identification of catalytically active sites with atomic-scale precision occupies a central place in the theory and practice of heterogeneous catalysis. Here the authors assess the nature of the copper-oxygen bond in a Cu-CHA zeolite and recover the microscopic structure of single-metal sites.

    • Paolo Cleto Bruzzese
    • , Enrico Salvadori
    •  & Mario Chiesa
  • Article
    | Open Access

    The antiferromagnetic topological insulator MnBi2Te4 exhibits Chern and axion insulator phases at low magnetic field; however, its behaviour in high magnetic field has remained unexplored. Here, using transport measurements at high magnetic field, the authors report a zero Hall plateau composed of two counter-propagating edge channels.

    • Chang Liu
    • , Yongchao Wang
    •  & Yayu Wang
  • Article
    | Open Access

    The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO3)10/(SrTiO3)10 superlattice.

    • Congbing Tan
    • , Yongqi Dong
    •  & Jiangyu Li
  • Article
    | Open Access

    The detailed understanding of the structural variations during cycling in cathodes for Zn-ion aqueous rechargeable batteries is still limited. Here, the authors utilize atomic-column-resolved scanning transmission electron microscopy to elucidate multiphase evolution during hydrated Zn-Ion insertion in vanadium oxide.

    • Pilgyu Byeon
    • , Youngjae Hong
    •  & Sung-Yoon Chung
  • Article
    | Open Access

    Conventional ultrafine grains can generate high-strength Mg alloys, but non-equilibrium grain boundaries deteriorates their corrosion resistance. Here, the authors present ultrafine grained Mg alloys with dense twins that display high strength and reduced corrosion rate by one order of magnitude.

    • Changjian Yan
    • , Yunchang Xin
    •  & Qing Liu