Materials chemistry

  • Article
    | Open Access

    Conventional upconversion nanoparticles (UCNPs) cannot activate multiple neuron populations independently using optogenetics. Here the authors report trichromatic UCNPs with excitation-specific luminescence to allow activation of three distinct neuronal populations in the brain of awake mice.

    • Xuan Liu
    • , Heming Chen
    •  & Fan Zhang
  • Article
    | Open Access

    Controlled breaking of a chemical bond by mechanical forces can provide key insight into reaction mechanisms. Here the authors, using atomic force microscopy and computations, measure the forces involved in breaking a single dative bond between a CO molecule and a ferrous phthalocyanine complex.

    • Pengcheng Chen
    • , Dingxin Fan
    •  & Nan Yao
  • Article
    | Open Access

    Machine learning has the potential to significantly speed-up the discovery of new materials in synthetic materials chemistry. Here the authors combine unsupervised machine learning and crystal structure prediction to predict a novel quaternary lithium solid electrolyte that is then synthesized.

    • Andrij Vasylenko
    • , Jacinthe Gamon
    •  & Matthew J. Rosseinsky
  • Article
    | Open Access

    Organic cluster-triggered emission (CTE) displays promising application in bioimaging, chemical sensing, and multicolor luminescence but circular polarize luminescence derived from CTE remains less studied. Here, the authors demonstrate CTE based CPL emission from a supramolecular film derived from solid phase molecular self-assembly.

    • Peilong Liao
    • , Shihao Zang
    •  & Yun Yan
  • Article
    | Open Access

    Fabricating materials with simultaneously spontaneous magnetic and electrical polarisations is challenging due to contradictory electronic features. Here, the authors report a synthesis path toward a perovskite MnSrTa2O7 by performing low-temperature cation-exchange reactions on Li2SrTa2O7.

    • Tong Zhu
    • , Fabio Orlandi
    •  & Michael A. Hayward
  • Article
    | Open Access

    Aggregation-induced emission (AIE) fluorescence probes are indispensable for biomedical imaging, however, interference with tissue autofluorescence results in low signal-to-noise ratio limiting the development of bioimaging with AIE materials. Here the authors develop AIEgen room-temperature phosphors with long emission lifetimes efficiently eliminating intereference with the background signal in imaging.

    • Jianhui Yang
    • , Yahui Zhang
    •  & Xin Zhang
  • Article
    | Open Access

    Broad-band emission of self-trapped exciton in low-dimensional perovskite is prospective for white LED, yet rational design new white perovskite remains challenge. Here, the authors develop an atom-substituting strategy to trigger exciton self-tapping in perovskites and reveal the mechanism behind.

    • Mingming Zhang
    • , Lili Zhao
    •  & Jun Xing
  • Article
    | Open Access

    Various strategies to assemble protein building blocks into one-, two- and three-dimensional hierarchical nanostructures were described, but controlling the transformation between those different assemblies is largely uninvestigated. Here, the authors describe a protein interface redesign strategy and use it for the self-assembly transformation of dimeric building blocks from hollow protein nanocage to filament, nanorod and nanoribbon.

    • Xiaorong Zhang
    • , Yu Liu
    •  & Guanghua Zhao
  • Article
    | Open Access

    Lipid membrane disruption is often associated with disease but is also essential to a range of biosensing and therapeutic techniques. Here, the authors report on the development of DNA-based particles that, upon exposure to an external cue, can aggregate, disrupt lipid membranes, and arrest the motion of bacteria.

    • Michal Walczak
    • , Ryan A. Brady
    •  & Lorenzo Di Michele
  • Article
    | Open Access

    Electrochemiluminescence (ECL) plays a key role in analysis and sensing but its application is limited by a lack of highly tunable luminophores. Here, the authors demonstrate the design of high efficient ECL luminophores of covalent organic frameworks (COFs) in aqueous media by simultaneously restricting the donor and acceptor to the COFs’ electron configurations and constructing charge transport networks through olefin linkages.

    • Ya-Jie Li
    • , Wei-Rong Cui
    •  & Jian-Ding Qiu
  • Article
    | Open Access

    Compared to inorganic materials, the magnetoelectric coupling in macromolecules is still hidden. Here, the authors describe machine learning coupled with additive manufacturing to accelerate the discovery of multiferroic macromolecules with a proton-mediated magnetoelectric coupling effect.

    • Yong Hu
    • , Scott Broderick
    •  & Shenqiang Ren
  • Article
    | Open Access

    Despite many reports on nanoparticle-covalent organic frameworks (COF) composites, a universal strategy for the synthesis of monodisperse core-shell structured COF nanocomposites remains challenging. Here, the authors develop a strategy for interfacial growth of highly crystalline COFs on functional nanoparticles with abundant optical, electrical and magnetic properties.

    • Liang Chen
    • , Wenxing Wang
    •  & Xiaomin Li
  • Article
    | Open Access

    Fine tuning of mechanical properties in elastomers is important for application of elastomers in flexible devices and biomedical field. Here, the authors prepare a nacre inspired PDMS-montmorrillonite composite with good mechanical properties and demonstrate crack tracing using aggregation-induced emission luminogens.

    • Jingsong Peng
    • , Antoni P. Tomsia
    •  & Qunfeng Cheng
  • Article
    | Open Access

    Dielectric elastomer actuators (DEAs) with large electrically actuated strain can be used in non-magnetic motors, but high stiffness, poor strength and slow response currently limit the application of DEAs. Here, the authors optimize the crosslinking network in a polyacrylate elastomer to enable a DEA with high toughness and actuation strain and use the polyacrylate to build a motor which can be driven under low electric field.

    • Li-Juan Yin
    • , Yu Zhao
    •  & Zhi-Min Dang
  • Article
    | Open Access

    Up-conversion photoluminescence in colloidal quantum dots is generally believed to be mediated by thermal activation from defect states. Here, the authors reveal that highly-efficient up-conversion photoluminescence instead is related to electron-phonon coupling.

    • Zikang Ye
    • , Xing Lin
    •  & Xiaogang Peng
  • Article
    | Open Access

    Force sensing using mechanochromic polymers is currently limited to two state systems and does not allow directly correlating the force with the absorption or emission wavelength. Here, the authors present a mechanochromic donor-acceptor torsional spring that undergoes force-induced planarization during uniaxial elongation leading to force dependent red-shifted absorption and emission spectra.

    • Maximilian Raisch
    • , Wafa Maftuhin
    •  & Michael Sommer
  • Article
    | Open Access

    Shape memory scaffolds are needed for minimally invasive tissue repair and void filling. Here the authors report on the development of 4D printed polycarbonate-based scaffolds with surface degradation properties which fill voids without deforming tissue and allow for tissue ingrowth with reduced immune response.

    • Andrew C. Weems
    • , Maria C. Arno
    •  & Andrew P. Dove
  • Article
    | Open Access

    The design of piezochromic luminescent materials with desirable stimuliresponsive properties remains challenging. Here, the authors report the insertion of a non-emissive molecule into a donor and acceptor binary cocrystal and realize desirable piezochromic luminescent properties by manipulation of intermolecular interactions between the donor and acceptor molecules.

    • Chunguang Zhai
    • , Xiu Yin
    •  & Bingbing Liu
  • Article
    | Open Access

    Responsiveness in metal-organic frameworks involving amorphous phases remains poorly understood. Here, the authors demonstrate MOFs that reversibly switch between well-defined crystalline and structurally degenerate amorphous states mediated by competing intra-framework forces.

    • Roman Pallach
    • , Julian Keupp
    •  & Sebastian Henke
  • Article
    | Open Access

    Extension of nanostructure fabrication in the single-nm regime is a promising but fabrication of nanostructures with high aspect ratios remains challenging. Here, the authors use high energy charged particles to produce free-standing 1D organic nanostructures with extremely high aspect ratios and controlled number density.

    • Koshi Kamiya
    • , Kazuto Kayama
    •  & Shu Seki
  • Article
    | Open Access

    Mechanically flexible single crystals are promising materials for advanced technological applications. Here, the authors study the high pressure response of a plastically flexible coordination polymer and provide indication of an overall disparate mechanical response of bulk flexibility and quasi-hydrostatic compression within the same crystal lattice.

    • Xiaojiao Liu
    • , Adam A. L. Michalchuk
    •  & Colin R. Pulham
  • Article
    | Open Access

    Cyclohexadienes have been widely explored as proaromatic surrogates for group transfer reactions but limited storage stability and difficult accessibility of these compounds limits the application range. Here, the authors present a class of proaromatic bicyclo[2.2.0]hexene derivatives and demonstrate their application in alkyl transfer reactions and sensing applications.

    • Bin Wu
    • , Jianing Wang
    •  & Rong Zhu
  • Article
    | Open Access

    Biomedical glues often face a challenge in providing strong adhesion and providing remodelling capabilities. Here the authors report on the development of a biocompatible and biodegradable protein-based coacervate adhesive and demonstrate application in haemostasis and wound healing using pig models.

    • Chao Ma
    • , Jing Sun
    •  & Andreas Herrmann
  • Article
    | Open Access

    In hybrid perovskites, the driving forces of an order–disorder transition that arise from the organic cation and inorganic framework cannot be easily untangled. Here, the authors introduce a cage-in-framework structure in which reorientation of the cage cation does not alter the cubic symmetry of the perovskite lattice.

    • Zhifang Shi
    • , Zheng Fang
    •  & Qixi Mi
  • Article
    | Open Access

    Many best-performing perovskite photovoltaics use 2D/3D interfaces to improve efficiency and stability, yet the mechanism of interface assembly is unclear. Here, Proppe et al. use in-situ GIWAXS to resolve this transformation, observing progressive dimensional reduction from 3D to 2D perovskites.

    • Andrew H. Proppe
    • , Andrew Johnston
    •  & Edward H. Sargent
  • Article
    | Open Access

    Charge dynamics in perovskite is not well-understood, limited by the knowledge of defect physics and charge recombination mechanism, yet the ABC and SRH models are widely used. Here, the authors introduce advanced PLQY mapping as function of excitation pulse energy and repetition frequency to examine the validity of these models.

    • Alexander Kiligaridis
    • , Pavel A. Frantsuzov
    •  & Ivan G. Scheblykin
  • Article
    | Open Access

    Realizing ultra-high work functions (UHWFs) in hole-doped polymer semiconductors remains a challenge due to water-oxidation reactions. Here, the authors determine the role of water-anion complexes in limiting the work function and develop a design strategy for realizing UHWF polymers.

    • Qi-Mian Koh
    • , Cindy Guanyu Tang
    •  & Peter K. H. Ho
  • Review Article
    | Open Access

    Electrocatalytic nanocarbon (EN) is a class of materials receiving intense interest as next generation electrocatalysts. Although impressive platforms, work is still required to develop our mechanistic understanding of them to that of molecular electrocatalysts.

    • Erik J. Askins
    • , Marija R. Zoric
    •  & Ksenija D. Glusac
  • Review Article
    | Open Access

    Water scarcity is a rapidly spreading global challenge but water purification technologies are often not sustainable. Here, the authors review the research on water purification technologies based on protein nanofibrils as a green and affordable solution to alleviate a water crisis.

    • Mohammad Peydayesh
    •  & Raffaele Mezzenga
  • Article
    | Open Access

    Self-oscillating systems that enable autonomous motions driven by a constant stimulus find applications in numerous fields but these systems are plagued with problems that restrict their practical applicability. Here, the authors create a photoactive self-winding fiber actuator that possesses a broad range of oscillation modes, controllable evolution between diverse modes, and loading capability.

    • Zhiming Hu
    • , Yunlong Li
    •  & Jiu-an Lv
  • Article
    | Open Access

    Techniques to alter the surface of materials to enable transport of fluids have advanced considerably, but dynamic microdroplet transport remains a challenge. Here, the authors report the fabrication of microtextured chemical gradients on elastomer films and their use in controlled microdroplet transport.

    • Ali J. Mazaltarim
    • , John J. Bowen
    •  & Stephen A. Morin
  • Article
    | Open Access

    Zirconium-based metal–organic frameworks have defective structures that are useful in catalysis and gas storage. Here, the authors study the interplay between cluster disorder and linker vacancies in PCN-221 and propose a new structure model with tilted Zr6O4(OH)4 clusters rather than Zr8O6 clusters.

    • Charlotte Koschnick
    • , Robert Stäglich
    •  & Bettina V. Lotsch
  • Article
    | Open Access

    Structural degradation in manganese oxides leads to unstable activity during long-term cycles. Herein, authors demonstrated that reduced unstable O 2p holes and the short interlayer distance of layered lithium manganese oxide are favorable for excellent electrocatalytic stability and activity.

    • Xuepeng Zhong
    • , M’hamed Oubla
    •  & Jiwei Ma
  • Article
    | Open Access

    Membrane-based gas separation exhibits many advantages over other conventional techniques but the construction of membranes with simultaneous high selectivity and permeability remains a major challenge. Here, the authors propose a layered double hydroxide (LDH)-polymer hybrid membrane, which shows improved CO2 permselectivity.

    • Xiaozhi Xu
    • , Jiajie Wang
    •  & Dermot O’Hare
  • Article
    | Open Access

    In this work, authors show that O-redox in 4d and 5d transition metal oxides involves the formation of molecular oxygen trapped in the particles. These results are in accord with observations in 3d oxides and show that the greater covalency of the 4d and 5d oxides does not stabilise peroxo-like species.

    • Robert A. House
    • , John-Joseph Marie
    •  & Peter G. Bruce
  • Article
    | Open Access

    3D printing enables customized manufacturing that is difficult to achieve through traditional material processing but 3D printing with high resolution and high speed is challenging to realize. Here, the authors demonstrate that photooxidation of a ketocoumarin photosensitizer can simultaneously deliver high print speed and high print resolution on a common 3D printer.

    • Xiaoyu Zhao
    • , Ye Zhao
    •  & Xiaolin Xie
  • Article
    | Open Access

    Solar steam water purification and fog collection are two independent processes that could enable abundant fresh water generation. Here, the authors develop a hydrogel membrane that contains microstructures and combines both functions and serves as an all-day fresh water harvester.

    • Ye Shi
    • , Ognjen Ilic
    •  & Julia R. Greer
  • Article
    | Open Access

    Bioinspired vascular networks transport heat and mass in multifunctional materials but lengthy multistep fabrication processes hinder large-scale application of structural vascular materials. Here, the authors report rapid, scalable, and synchronized fabrication of vascular thermosets and fiberreinforced composites under ambient conditions.

    • Mayank Garg
    • , Jia En Aw
    •  & Nancy R. Sottos