Magnetospheric physics articles within Nature Communications

Featured

  • Article
    | Open Access

    Plasma created in laboratory are useful to understand the properties of atmospheric and space plasma. Here the authors report a laboratory plasma experiment in a dipole magnetic field to show the excitation of chirping whistler waves, i.e. chorus emission.

    • Haruhiko Saitoh
    • , Masaki Nishiura
    •  & Zensho Yoshida
  • Article
    | Open Access

    Both particle and wave energy exist in plasma and energy transfer leads to many interesting phenomena like turbulence, particle acceleration. Here the authors show electron-scale coherent structure resulting from energy transfer in magnetosheath using a model and data from Magnetospheric Multiscale Mission.

    • Zi-Kang Xie
    • , Qiu-Gang Zong
    •  & Per-Arne Lindqvist
  • Article
    | Open Access

    A fundamental feature of planetary magnetospheres is internal convection induced by surrounding solar wind. Here, authors offer insights into the interplay among solar wind, magnetosphere, and ionosphere, and evidence a dayside-driven convection pattern linked to magnetic-field-aligned currents.

    • Lei Dai
    • , Minghui Zhu
    •  & Graziella Branduardi-Raymont
  • Article
    | Open Access

    Jets have been found in Earth’s magnetosheath for two decades and, more recently, also in Mars. Yet, their universal existence in planetary magnetosheath remains an open question. Here, authors report the presence of anti-sunward and sunward jets at Jupiter and compare them to Earth and Mars.

    • Yufei Zhou
    • , Savvas Raptis
    •  & Lan Ma
  • Article
    | Open Access

    How and via which mechanism the energy transfers between scales in imbalanced Alfvénic turbulence is an open question. Here, the authors show that the energy transfer of imbalanced Alfvénic turbulence is completed by coherent interactions between Alfvén waves and co-propagating anomalous fluctuations.

    • Liping Yang
    • , Jiansen He
    •  & Ziqi Wu
  • Article
    | Open Access

    How solar wind and ionosphere contribution to the plasma in the magnetosphere during the development of geomagnetic storms changes is an open question. Here, the authors show a dynamic source change during a storm from solar wind to the ionosphere as the storm develops.

    • L. M. Kistler
    • , K. Asamura
    •  & I. Shinohara
  • Article
    | Open Access

    Mars lacks a global intrinsic magnetic field. Here, the authors show wedge-like dispersion structures of Hydrogen ions exhibiting butterfly-shaped distributions, which was previously found only in intrinsic magnetospheres.

    • Chi Zhang
    • , Hans Nilsson
    •  & Stas Barabash
  • Article
    | Open Access

    BepiColombo mission had its first Mercury flyby on 1 October 2021. Here, the authors show plasma measurements taken during this flyby, which reveals that electron injections and subsequent energy-dependent drift is a universal mechanism generating aurorae in the planetary magnetospheres.

    • Sae Aizawa
    • , Yuki Harada
    •  & Go Murakami
  • Article
    | Open Access

    Although whistler-mode chorus waves are common in the Earth’s and other planetary magnetospheres, the mechanism behind fast frequency chirping is debated. Here, the authors show the presence of chorus emissions at Mars, with fundamentally the same nonlinear nature as those at Earth, despite vastly different magnetic and plasma conditions.

    • Shangchun Teng
    • , Yifan Wu
    •  & Xin Tao
  • Article
    | Open Access

    Kelvin-Helmholtz Instability (KHI) has been suggested as a significant source of geomagnetic activity during northward Interplanetary Magnetic Fields (IMF). Here, the authors show seasonal and diurnal variations of KHI at Earth’s magnetopause, highlighting the importance of Sun-earth geometry for space weather.

    • S. Kavosi
    • , J. Raeder
    •  & C. J. Farrugia
  • Article
    | Open Access

    Kinetic Alfven Waves (KAWs) are ubiquitous in space plasmas. Here, the authors show that application of particle sounding technique to Magnetospheric Multiscale Mission data enables measuring perpendicular wavelength of KAWs.

    • Z.-Y. Liu
    • , Q.-G. Zong
    •  & G. Le
  • Article
    | Open Access

    Scattering by the upper- and lower-band chorus waves are the dominant cause of diffuse auroral precipitation. Here, the authors show that the lower-band chorus alone satisfies the preferred condition for the generation of second harmonics to trigger the diffuse auroral electron precipitation.

    • Xiongdong Yu
    • , Zhigang Yuan
    •  & H. O. Funsten
  • Article
    | Open Access

    Magnetized plasmas display continuous spectra of current-sheet equilibria. How they select a particular equilibrium is not well understood. Now, equilibrium selection in magnetized plasmas is studied by analytical theory, particle-in-cell simulations and spacecraft observations, highlighting the role of current-sheet relaxation processes.

    • Young Dae Yoon
    • , Deirdre E. Wendel
    •  & Gunsu S. Yun
  • Article
    | Open Access

    Cross-scale energy transfers in collisionless plasmas help understanding involved mechanisms. Here, the authors show simultaneous macro- and micro-scale wave-ion interactions provide an efficient mechanism for cross-scale energy transfer and plasma energization in astrophysical and space plasmas.

    • Z.-Y. Liu
    • , Q.-G. Zong
    •  & G. Le
  • Article
    | Open Access

    It is suggested that waves can provide both diffusion and resistivity that can potentially support the reconnection electric field in low-density astrophysical plasmas. Here, the authors show, using direct spacecraft measurements, that the waves contribute to anomalous diffusion but do not contribute to the reconnection electric field.

    • D. B. Graham
    • , Yu. V. Khotyaintsev
    •  & K. Dokgo
  • Article
    | Open Access

    Energetic electron densities in the radiation belt increases during geomagnetic storms. Here, the authors show oblique whistler mode waves enhance electron losses and create strong fluxes of about 100 keV electrons precipitating into the atmosphere, that should be considered in radiation belt models.

    • Xiao-Jia Zhang
    • , Anton Artemyev
    •  & Ayako Matsuoka
  • Article
    | Open Access

    Ring currents have been observed in the magnetospheres of Earth, Jupiter, and Saturn. Here, the authors show observational evidence of Mercury’s ring current that is bifurcated because of the dayside off-equatorial magnetic minima.

    • J.-T. Zhao
    • , Q.-G. Zong
    •  & Y. Wei
  • Article
    | Open Access

    Several mechanisms exist for formation of jets observed in Earth’s magnetosheath. Here, the authors show evidence of high-speed downstream flows generated at the Earth’s bow shock as a direct consequence of shock reformation, which is different than the proposed mechanisms.

    • Savvas Raptis
    • , Tomas Karlsson
    •  & Per-Arne Lindqvist
  • Article
    | Open Access

    The magnetopause surface waves (SW) that drive global plasma dynamics are thought, like waves on water, to travel with the driving solar wind. Here, the authors show that impulsively-excited SW, with standing structure along the geomagnetic field, are stationary by propagating against this flow.

    • M. O. Archer
    • , M. D. Hartinger
    •  & L. Rastaetter
  • Article
    | Open Access

    Superbolts are powerful, rare lightning events. Here, the authors show simultaneous satellite and ground measurements of a superbolt, and demonstrate different properties of superbolts and lightnings.

    • J.-F. Ripoll
    • , T. Farges
    •  & S. Pédeboy
  • Article
    | Open Access

    During geomagnetic substorms, the energy accumulated from solar wind is abruptly transported to ionosphere. Here, the authors show application of community detection on the time-varying networks constructed from all magnetometers collaborating with the SuperMAG initiative.

    • L. Orr
    • , S. C. Chapman
    •  & W. Guo
  • Article
    | Open Access

    Hurricanes in the Earth’s low atmosphere are known, but not detected in the upper atmosphere earlier. Here, the authors show a long-lasting hurricane in the polar ionosphere and magnetosphere with large energy and momentum deposition despite otherwise extremely quiet conditions.

    • Qing-He Zhang
    • , Yong-Liang Zhang
    •  & Li-Dong Xia
  • Article
    | Open Access

    Seasonally averaged energy input into the ionosphere from geospace is generally considered to be symmetric. Here, the authors show preference for electromagnetic energy input at 450 km altitude into the northern hemisphere, on both the dayside and the nightside, when averaged over season.

    • I. P. Pakhotin
    • , I. R. Mann
    •  & D. J. Knudsen
  • Article
    | Open Access

    Very-Low-Frequency (VLF) communication transmitters, operate worldwide, radiate emissions at particular frequencies 10-30 kHz. Here, the authors show VLF transmitter emissions that leak from the Earth’s ground are primarily responsible for bifurcating the energetic electron belt over 20–100 keV.

    • Man Hua
    • , Wen Li
    •  & Geoffrey D. Reeves
  • Article
    | Open Access

    Electrons in the Van Allen radiation belts can have energies in excess of 7 MeV, however, the energization mechanism is debated. Here, the authors show phase space density peaks in magnetic coordinate space as a way of analyzing satellite observations which demonstrates that local acceleration is capable of heating electrons up to 7 MeV.

    • Hayley J. Allison
    •  & Yuri Y. Shprits
  • Article
    | Open Access

    Magnetic reconnection is a fundamental plasma process of magnetic energy conversion to kinetic energy. Here, the authors show direct evidence of secondary reconnection in the filamentary currents within the flux ropes indicating a significant contribution to energy conversion in the kinetic scale during turbulent reconnection.

    • Shimou Wang
    • , Rongsheng Wang
    •  & Shui Wang
  • Article
    | Open Access

    Theoretical studies suggested that plasmapause surface waves related to the sharp inhomogeneity exist and act as a source of geomagnetic pulsations. Here, the authors show direct observations of a plasmapause surface wave and its impacts during a geomagnetic storm using multi-satellite and ground-based observations.

    • Fei He
    • , Rui-Long Guo
    •  & Wei-Xing Wan
  • Article
    | Open Access

    Various types of plasma waves are generated around electron diffusion regions (EDRs). Here the authors show electron Bernstein waves (EBWs), at the electron-scale boundary of the Hall current reversal near EDR, are sufficiently strong to diffuse electrons and modify electron pressure tensor.

    • W. Y. Li
    • , D. B. Graham
    •  & J. L. Burch
  • Article
    | Open Access

    Chorus waves are crucial on radiation belt dynamics in the space of magnetized planets. Here, the authors show that initially excited single-band chorus waves can quickly accelerate medium energy electrons, and divide the anisotropic electrons into low and high energy components, which subsequently excite two-band chorus waves.

    • Jinxing Li
    • , Jacob Bortnik
    •  & Daniel N. Baker
  • Article
    | Open Access

    Magnetic cavities are universal phenomena existing in cosmic plasma environments. Here Liu et al. show electron scale magnetic cavities in proton scale magnetic cavities observed by Magnetospheric Multiscale (MMS) spacecraft in the Earth’s magnetosheath, and depict the boundary of the electron scale magnetic cavity using particle sounding technique.

    • H. Liu
    • , Q.-G. Zong
    •  & R. Rankin
  • Article
    | Open Access

    Surface waves on the boundary between a magnetosphere and the surrounding plasma might get trapped by the ionosphere forming an eigenmode. Here, Archer et al. show direct observations of this proposed mechanism at Earth’s magnetosphere by analyzing the response to an isolated fast plasma jet detected by the THEMIS satellites.

    • M. O. Archer
    • , H. Hietala
    •  & V. Angelopoulos
  • Article
    | Open Access

    Electron precipitation plays major role in magnetospheric physics and space weather. Here the authors show nonlinear behavior of the wave–particle interaction in the magnetosphere as the evolution of chorus electromagnetic waves detected by the Arase satellite and PWING observatory.

    • Mitsunori Ozaki
    • , Yoshizumi Miyoshi
    •  & Iku Shinohara
  • Article
    | Open Access

    Magnetic reconnection is the process of releasing energy by magnetized and space plasma. Here the authors report experimental observation of magnetic reconnection in laser-produced plasma and the role of electron scaling on reconnection.

    • Y. Kuramitsu
    • , T. Moritaka
    •  & M. Hoshino
  • Article
    | Open Access

    Radial diffusion is the only mechanism considered to accelerate trapped electrons to relativistic energies in Saturn’s magnetic field, forming radiation belts. Here the authors show another mechanism, electron acceleration via Doppler shifted cyclotron resonant interaction with Z-mode waves, which can form radiation belts inside the orbit of Enceladus.

    • E. E. Woodfield
    • , R. B. Horne
    •  & W. S. Kurth
  • Article
    | Open Access

    Remote sensing of geomagnetic fields in mesosphere is both challenging and interesting to explore the magnetic field structures and atomic collision processes. Here the authors demonstrate an atomic magnetometer that utilizes the Larmor frequency in sodium atoms and operates in kilometers range.

    • Felipe Pedreros Bustos
    • , Domenico Bonaccini Calia
    •  & Simon Rochester
  • Article
    | Open Access

    Observations of Jupiter’s magnetosphere provide opportunities to understand how magnetic fields interact with particles. Here, the authors report that the chorus wave power is increased in the vicinity of Europa and Ganymede. The generated waves are able to accelerate particles to very high energy.

    • Y. Y. Shprits
    • , J. D. Menietti
    •  & D. A. Gurnett