Halogen bonding articles within Nature Communications

Featured

  • Article
    | Open Access

    Halogen bonding is widely adopted in organic synthesis and supramolecular crystal engineering but application of halogen bonding in the design of stimuli-responsive materials is challenging. Here, the authors report a liquid crystalline network that contains dynamic halogen-bond crosslinks and possesses reversible thermo-responsive shape memory behaviour.

    • Hongshuang Guo
    • , Rakesh Puttreddy
    •  & Arri Priimagi
  • Article
    | Open Access

    Current models of halogen bonding describe the σ-symmetric component of this interaction but do not contemplate the possibility of π-covalency. Here the authors provide experimental and computational evidence of π-covalency in halogen bonds involving radical cation halogen bond donors.

    • Cameron W. Kellett
    • , Pierre Kennepohl
    •  & Curtis P. Berlinguette
  • Article
    | Open Access

    Carbon atoms of various species typically function as acceptors of noncovalent interactions when they are part of a π-system. Here, the authors report their discovery of a noncovalent halogen bond involving the isocyano carbon lone pair, which results in adducts with strongly reduced isocyanide odor.

    • Alexander S. Mikherdov
    • , Alexander S. Novikov
    •  & Vadim Yu. Kukushkin
  • Article
    | Open Access

    Scanning tunnelling microscopy (STM) is commonly used to study 2D molecular self-assembly but is not always enough to fully solve a supramolecular structure. Here, the authors combine a high-resolution version of STM with first-principles simulations to precisely identify halogen bonding in polycyclic aromatic molecules.

    • James Lawrence
    • , Gabriele C. Sosso
    •  & Giovanni Costantini
  • Article
    | Open Access

    Organic heterostructures attract attention in material chemistry but the precise bottom-up synthesis is still challenging. Herein the authors present a hierarchical self-assembly approach to synthesize one-dimensional organic heterostructures by regulating the noncovalent interactions.

    • Ming-Peng Zhuo
    • , Jun-Jie Wu
    •  & Liang-Sheng Liao
  • Article
    | Open Access

    The halogen bond is well known for its ability to assemble supramolecules. Here, using NMR experiments, the authors reveal the role of these bonds in dynamic processes, finding that the halogen bond directly catalyzes dynamical rotation in solid cocrystals by reducing the associated energy barrier.

    • Patrick M. J. Szell
    • , Scott Zablotny
    •  & David L. Bryce
  • Article
    | Open Access

    Halogen bonding can be exploited for the design of functional supramolecular materials, but heavier elements that are known to accept a halogen bond remain limited. Here, the authors demonstrate the formation of two-component cocrystals based on halogen bonds with phosphorus, arsenic and antimony.

    • Katarina Lisac
    • , Filip Topić
    •  & Dominik Cinčić