Graphene articles within Nature Communications

Featured

  • Article
    | Open Access

    It is challenging to produce biomass FG continuously due to the lack of an integrated device. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint.

    • Xiangdong Zhu
    • , Litao Lin
    •  & Yong-Guan Zhu
  • Article
    | Open Access

    Kekulé vortices in hexagonal lattices can host fractionalized charges at zero magnetic field, but have remained out of experimental reach. Here, the authors report a Kekulé vortex in the local density states of graphene around a chemisorbed hydrogen adatom.

    • Yifei Guan
    • , Clement Dutreix
    •  & Vincent T. Renard
  • Article
    | Open Access

    Rhombohedral multilayer graphene has emerged as an exciting solid-state platform for studying correlated electron physics. Here, the authors demonstrate field-tunable layer-polarized ferromagnetism and isolated surface flat bands engineered with a moiré potential.

    • Wenqiang Zhou
    • , Jing Ding
    •  & Shuigang Xu
  • Article
    | Open Access

    The controllability of deformation height in reconfigurable touch displays currently limits their deliverable information. Hwang et al. present a light-triggered morphable tactile display enabling generation of refreshable, height-adjustable, and latchable 3D topologies with varying textures on a thin film surface.

    • Inwook Hwang
    • , Seongcheol Mun
    •  & Sungryul Yun
  • Article
    | Open Access

    Electron–phonon interactions are a crucial aspect of high-quality graphene devices. Here, the authors show that graphene resistivity grows strongly in the direction of the carrier flow when the drift velocity exceeds the speed of sound due to the electrical amplification of acoustic terahertz phonons.

    • Aaron H. Barajas-Aguilar
    • , Jasen Zion
    •  & Javier D. Sanchez-Yamagishi
  • Article
    | Open Access

    To maximize composite reinforcing efficiency, a semi-infinite reinforcement should be aligned in the matrix. Here, the authors report a float-stacking strategy for graphene-PMMA laminate with precisely aligned monolayer graphene in a polymer matrix.

    • Seung-Il Kim
    • , Ji-Yun Moon
    •  & Jae-Hyun Lee
  • Article
    | Open Access

    Via Raman and infrared spectroscopy measurements, X. Zan et al. find that rhombohedral ABC trilayer graphene has stronger electron/infrared-phonon coupling than Bernal ABA trilayer graphene.

    • Xiaozhou Zan
    • , Xiangdong Guo
    •  & Guangyu Zhang
  • Article
    | Open Access

    Graphene oxide is in demand for various applications - however, this is complicated by changing physicochemical properties over time. Here, the authors show the intrinsic, metastable, and transient states of graphene oxide colloids upon ripening.

    • Hayato Otsuka
    • , Koki Urita
    •  & Katsumi Kaneko
  • Article
    | Open Access

    Here, the authors report the synthesis and characterization of doped nanoporous graphene superlattices, showing their improved properties for electromagnetic shielding, energy harvesting, optoelectronic and thermoelectric applications.

    • Hualiang Lv
    • , Yuxing Yao
    •  & Xiaoguang Wang
  • Article
    | Open Access

    The integration of 2D materials with metasurfaces can enhance their quantum efficiency, but the approach is usually limited to a narrow spectral band. Here, the authors report the realization of gate-tunable graphene photodetectors combined with all-dielectric periodic slits, leading to enhanced photoresponse in the short-to-long-wave infrared.

    • Hao Jiang
    • , Jintao Fu
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    Via the first-principles calculations and experimental verifications, a guiding principle is established to design heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials for efficient non-dissociative solid-state hydrogen storage.

    • Yong Gao
    • , Zhenglong Li
    •  & Hongge Pan
  • Article
    | Open Access

    Here, the authors report a study of the structural properties of intercalated alkali metals in bilayer graphene and graphite via low-voltage scanning transmission electron microscopy, providing mechanistic insights for the development of energy storage applications.

    • Yung-Chang Lin
    • , Rika Matsumoto
    •  & Kazu Suenaga
  • Article
    | Open Access

    Gate-defined superconducting moiré devices offer high tunability for probing the nature of superconducting and correlated insulating states. Here, the authors report the Little–Parks and Aharonov–Bohm effects in a single gate-defined magic-angle twisted bilayer graphene device.

    • Shuichi Iwakiri
    • , Alexandra Mestre-Torà
    •  & Klaus Ensslin
  • Article
    | Open Access

    Intrinsic anomalous Hall effect has been observed in twisted graphene multilayers, but these structures are typically not energetically favorable. This study extends these observations to Bernal-stacked tetralayer graphene, which is the most stable configuration of four-layer graphene.

    • Hao Chen
    • , Arpit Arora
    •  & Kian Ping Loh
  • Article
    | Open Access

    Graphene quantum dots promise applications for spin and valley qubits; however a demonstration of phase coherent oscillations has been lacking. Here the authors report coherent charge oscillations and measurements of coherence times in highly tuneable double quantum dots in bilayer graphene.

    • K. Hecker
    • , L. Banszerus
    •  & C. Stampfer
  • Article
    | Open Access

    The authors provide an experimental demonstration of magnetic field generation in graphene disks via the inverse Faraday effect. When the disks are illuminated with circularly polarized radiation in resonance with the graphene plasmon frequency, the corresponding rotational motion of the charge carriers gives rise to a unipolar magnetic field.

    • Jeong Woo Han
    • , Pavlo Sai
    •  & Martin Mittendorff
  • Article
    | Open Access

    Atomically thick anticorrosion coatings on Cu are desired for future applications, but still at its infancy. Here, the authors report a Janus-doping mechanism in bilayer graphene on Cu substrate that results in an enhanced anticorrosion performance.

    • Mengze Zhao
    • , Zhibin Zhang
    •  & Kaihui Liu
  • Article
    | Open Access

    Recent experiments have shown that proton transport through graphene electrodes can be promoted by light, but the understanding of this phenomenon remains unclear. Here, the authors report the electrical tunability of this photo-effect, showing a connection between graphene electronic and proton transport properties.

    • S. Huang
    • , E. Griffin
    •  & M. Lozada-Hidalgo
  • Article
    | Open Access

    Designing an efficient activation function for optical neural networks remains a challenge. Here, the authors demonstrate a modulator-detector-in-one graphene/silicon heterojunction ring resonators enabling on-chip reconfigurable activation function devices with phase activation capability for optical neural networks.

    • Chuyu Zhong
    • , Kun Liao
    •  & Hongtao Lin
  • Article
    | Open Access

    Zig-Zag graphene nanoribbons have edge states that are predicted to be spin-polarized, however, measurement of these spin-polarized states has proved elusive. Here, Brede et al overcome this challenge by growing graphene nanoribbons on ferromagnetic GdAu2, allowing for the direct observation of the spin-polarized edge states.

    • Jens Brede
    • , Nestor Merino-Díez
    •  & David Serrate
  • Article
    | Open Access

    Here, the authors report the realization of a sub-THz wireless data link based on a graphene-integrated optoelectronic mixer with a >96 GHz bandwidth, −44 dB upconversion efficiency and <0.1 mm2 footprint, providing an alternative approach for the realization of millimeter-wave transmitters.

    • Alberto Montanaro
    • , Giulia Piccinini
    •  & Marco Romagnoli
  • Article
    | Open Access

    By combining graphene with transition metal dichalcogenides, such as WSe2, it is possible to induce a large spin-orbit interaction in the graphene layer. Here, Rao et al study the spin-orbit coupling in graphene/WSe2 heterostructures using the ballistic transport based technique, known transverse magnetic focusing.

    • Qing Rao
    • , Wun-Hao Kang
    •  & Dong-Keun Ki
  • Article
    | Open Access

    The large-scale fabrication of twisted van der Waals heterostructures remains challenging due to the formation of defects and contaminations during the transfer process. Here, the authors report a transfer method to fabricate graphene-based van der Waals superlattices at the wafer scale, showing controllable twist angles and robust quantum Hall effect.

    • Guowen Yuan
    • , Weilin Liu
    •  & Libo Gao
  • Article
    | Open Access

    Designing electrocatalysts for water treatment with high activity/selectivity as elaborately as natural enzymes remains a challenge. This work presents the design of electrocatalysts by mimicking the binding pocket configuration and active center of dehalogenases, achieving efficient water dechlorination.

    • Yuan Min
    • , Shu-Chuan Mei
    •  & Yujie Xiong
  • Article
    | Open Access

    Nanographenes, as their name suggests, are small sections of graphene. They offer a diverse array of magnetic behaviors; for example, sublattice imbalances in the nanographene lead to unpaired spins. Here, Du et al uncover a large variation in the exchange energy in nanographenes, due to changes in the frontier orbital symmetries.

    • Qingyang Du
    • , Xuelei Su
    •  & Ping Yu
  • Article
    | Open Access

    The use and characterization of graphene quantum dots is limited by their pronounced tendency to form aggregates. Here, the authors synthesize rod-shaped motifs of nanographenes with up to 132 sp2 carbon atoms that are fully individualized, which allows the precise description of their intrinsic photophysical properties.

    • Daniel Medina-Lopez
    • , Thomas Liu
    •  & Stephane Campidelli
  • Article
    | Open Access

    Here, the authors report the design and realization of an in-sensor computing optoelectronic device with programmable spectral responsivity based on an ensemble of cavity-enhanced MoS2 photodetectors. The device can perform direct analog processing during the light detection process, without the need to computationally reconstruct the entire optical spectra.

    • Dohyun Kwak
    • , Dmitry K. Polyushkin
    •  & Thomas Mueller
  • Article
    | Open Access

    The bulk photovoltaic effect (BPVE) is a nonlinear optical effect offering a promising approach to overcome the limitations of conventional photovoltaics. Here, the authors report the observation of BPVE-induced photocurrents at the edges of 2D semiconductors embedded in various van der Waals heterostructures.

    • Zihan Liang
    • , Xin Zhou
    •  & Xiaolong Chen
  • Article
    | Open Access

    Uncontrolled dendrite growth and severe side reactions at high capacities and rates impede its practical application for zinc metal anodes. Here, the authors propose a composite zinc anode with 3D hierarchical graphene matrix as a multifunctional host to regulate zinc deposition for aqueous zinc batteries.

    • Yongbiao Mu
    • , Zheng Li
    •  & Lin Zeng
  • Article
    | Open Access

    Twisted moiré heterostructures offer a highly tunable solid-state platform for exploring fundamental condensed matter physics. Here, the authors use scanning tunnelling microscopy to investigate the local electronic structure of the gate-controlled quantum anomalous Hall insulator state in twisted monolayer–bilayer graphene.

    • Canxun Zhang
    • , Tiancong Zhu
    •  & Michael F. Crommie
  • Article
    | Open Access

    Bilayer graphene (BLG) is promising for optoelectronic applications due to its tunable bandgap, but its large-area growth on Cu substrates is still challenging. Here, the authors demonstrate the fast synthesis of high-coverage meter-scale BLG on commercial Cu foils by introducing CO2 during the growth.

    • Jincan Zhang
    • , Xiaoting Liu
    •  & Zhongfan Liu
  • Article
    | Open Access

    Structural superlubricity (SSL) is a state of nearly zero friction and no wear between two contacted solid surfaces. Here, authors show that, by preventing edge contact with the substrate, a microscale graphite flake can achieve robust SSL against nanostructured silicon surfaces under ambient condition.

    • Xuanyu Huang
    • , Tengfei Li
    •  & Quanshui Zheng
  • Article
    | Open Access

    The electromagnetic (EM) energy released by electronic devices in the environment is largely wasted and contributes to EM pollution. Here, the authors report the synthesis of staggered circular nanoporous graphene enabling the absorption and conversion of EM waves into electricity via the thermoelectric effect.

    • Hualiang Lv
    • , Yuxing Yao
    •  & Xiaoguang Wang
  • Article
    | Open Access

    Significant attention has been devoted to understanding the low-electric-field properties of carriers in moiré graphene, but high-electric-field transport has not been as well explored. Here, the authors find non-monotonic transport behavior at moiré minigaps due to competition between inter-band tunneling and coupling to out-of-equilibrium phonons.

    • Jubin Nathawat
    • , Ishiaka Mansaray
    •  & Jonathan P. Bird
  • Comment
    | Open Access

    More than a decade after the first demonstration of large-scale graphene synthesis by chemical vapor deposition, the commercialization of graphene products is limited not only by price, but also by consistency, reproducibility, and predictability. Here, the author discusses the reproducibility issues in the field and proposes possible solutions to improve the reliability of published results.

    • Peter Bøggild
  • Article
    | Open Access

    Twisted 2D materials have recently emerged as a controllable quantum simulator platform. Here, the authors apply the same approach to tune the edge states of zigzag graphene nanoribbons, showing a unique degree of freedom represented by the lateral stacking offset of the 1D nanostructures.

    • Dongfei Wang
    • , De-Liang Bao
    •  & Hong-Jun Gao
  • Article
    | Open Access

    Layered 2D materials can be used for organic solvent nanofiltration (OSN) membrane fabrication due to precise molecular sieving by the interlayer structure and stability in harsh conditions. Here authors synthesise sp2-enriched nanoporous graphene by microwave treatment and demonstrate its excellent OSN performance.

    • Junhyeok Kang
    • , Yeongnam Ko
    •  & Dae Woo Kim