Graphene articles within Nature

Featured

  • Article |

    A magnetic-field-induced Wigner crystal in Bernal-stacked bilayer graphene was directly imaged using high-resolution scanning tunnelling microscopy and its structural properties as a function of electron density, magnetic field and temperature were examined.

    • Yen-Chen Tsui
    • , Minhao He
    •  & Ali Yazdani
  • Article |

    Integer and fractional quantum anomalous Hall effects in a rhombohedral pentalayer graphene–hBN moiré superlattice are observed, providing an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field.

    • Zhengguang Lu
    • , Tonghang Han
    •  & Long Ju
  • Article
    | Open Access

    Vectorial optoelectronic metasurfaces are described, showing that light pulses can be used to drive and direct local charge flows around symmetry-broken plasmonic nanostructures, leading to tunable responses in terahertz emission.

    • Jacob Pettine
    • , Prashant Padmanabhan
    •  & Hou-Tong Chen
  • Article |

    Semiconducting epigraphene aligned with single-crystal silicon carbide substrates has a band gap of 0.6  eV and room temperature mobilities 20 times larger than that of other two-dimensional semiconductors, making it suitable for nanoelectronics.

    • Jian Zhao
    • , Peixuan Ji
    •  & Walt A. de Heer
  • Article
    | Open Access

    Imaging of quantum oscillations in Bernal-stacked trilayer graphene with dual gates enables high-precision reconstruction of the highly tunable bands and reveals naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree.

    • Haibiao Zhou
    • , Nadav Auerbach
    •  & Eli Zeldov
  • Article |

    A miniaturized narrow-channel in-plane electrochemical capacitor shows drastically reduced ionic resistances within both the electrode material and the electrolyte and an ultrahigh areal capacitance by downscaling the channel width with femtosecond-laser scribing.

    • Yajie Hu
    • , Mingmao Wu
    •  & Liangti Qu
  • Article |

    Orbital multiferroicity reported in pentalayer rhombohedral graphene features ferro-orbital-magnetism and ferro-valleytricity, both of which can be controlled by an electric field.

    • Tonghang Han
    • , Zhengguang Lu
    •  & Long Ju
  • Article
    | Open Access

    A Dirac plasma in high-mobility graphene shows anomalous magnetotransport and giant magnetoresistance that reaches more than 100 per cent in a low magnetic field at room temperature.

    • Na Xin
    • , James Lourembam
    •  & Alexey I. Berdyugin
  • News & Views |

    Two microscopy techniques have been merged into a tool for twisting ultrathin sheets of atoms relative to each other. The approach offers a new angle for studying the electronic properties of exotic layered materials.

    • Rebeca Ribeiro-Palau
  • News & Views |

    Electrons in a pure-carbon material display properties that are reminiscent of those in heavy-element compounds. A model inspired by this link hints at how a single-element material can exhibit complex electronic behaviour.

    • Aline Ramires
  • Article |

    Using an interlayer bonding cleavage strategy, a two-dimensional monolayer fullerene network is prepared; its moderate bandgap makes it a potential candidate for use in two-dimensional electronic devices.

    • Lingxiang Hou
    • , Xueping Cui
    •  & Jian Zheng
  • Article |

    Three tunable quantum Hall broken-symmetry states in charge-neutral graphene are identified by visualizing their lattice-scale order with scanning tunnelling microscopy and spectroscopy.

    • Alexis Coissard
    • , David Wander
    •  & Benjamin Sacépé
  • Article |

    Two new plasmon modes are observed in macroscopic twisted bilayer graphene with a highly ordered moiré superlattice, the first being the signature of chiral plasmons and the second a slow plasmonic mode around 0.4 electronvolts.

    • Tianye Huang
    • , Xuecou Tu
    •  & Xiaomu Wang
  • News & Views |

    The polarization, wavelength and power of a light wave can be simultaneously identified by a compact device made from twisted layers of carbon atoms — with a little help from an artificial neural network.

    • Justin C. W. Song
    •  & Yidong Chong
  • News & Views |

    The inclusion of nitrogen atoms stabilizes the zigzag edges of carbon-based nanoribbons, enabling the ribbons to be decoupled from a substrate and providing a probe for their unconventional magnetism.

    • Aran Garcia-Lekue
    •  & Daniel Sánchez-Portal
  • Article |

    Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.

    • Raymond E. Blackwell
    • , Fangzhou Zhao
    •  & Felix R. Fischer
  • Article |

    Superconductivity is observed in rhombohedral trilayer graphene in the absence of a moiré superlattice, with two distinct superconducting states both occurring at a symmetry-breaking transition where the Fermi surface degeneracy changes.

    • Haoxin Zhou
    • , Tian Xie
    •  & Andrea F. Young
  • Article |

    A study shows that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory and reveals that magnetism in moiré materials is fundamentally itinerant in nature.

    • Haoxin Zhou
    • , Tian Xie
    •  & Andrea F. Young
  • Article |

    Restricting the initial growth temperatures used for chemical vapour deposition of graphene on metal foils produces optimum conditions for growing large areas of fold-free, single-crystal graphene.

    • Meihui Wang
    • , Ming Huang
    •  & Rodney S. Ruoff
  • Article |

    Direct infrared nano-imaging of plasmonic waves in graphene carrying high current density reveals the Fizeau drag of plasmon polaritons by fast-moving quasi-relativistic electrons.

    • Y. Dong
    • , L. Xiong
    •  & D. N. Basov
  • Article |

    Nanoscale imaging of edge currents in charge-neutral graphene shows that charge accumulation can explain various exotic nonlocal transport measurements, bringing into question some theories about their origins.

    • A. Aharon-Steinberg
    • , A. Marguerite
    •  & E. Zeldov
  • Article |

    Nano-Raman spectroscopy reveals localization of some vibrational modes in reconstructed twisted bilayer graphene and provides qualitative insights into how electron–phonon coupling affects the vibrational and electronic properties of the material.

    • Andreij C. Gadelha
    • , Douglas A. A. Ohlberg
    •  & Ado Jorio
  • Article |

    Non-volatile electrical switching of magnetic order in an orbital Chern insulator is experimentally demonstrated using a moiré heterostructure and analysis shows that the effect is driven by topological edge states.

    • H. Polshyn
    • , J. Zhu
    •  & A. F. Young
  • Article |

    An ultimately thin microwave bolometric sensor based on a superconductor–graphene–superconductor Josephson junction with monolayer graphene has a sensitivity approaching the fundamental limit imposed by intrinsic thermal fluctuations.

    • Gil-Ho Lee
    • , Dmitri K. Efetov
    •  & Kin Chung Fong
  • Article |

    Tuning the electronic interactions by changing the dielectric environment of twisted bilayer graphene reveals the disappearance of the insulating states and their replacement by superconducting phases, suggesting a competition between the two phases.

    • Petr Stepanov
    • , Ipsita Das
    •  & Dmitri K. Efetov
  • Article |

    Graphene is shown to be impermeable to helium and several other gases, except for hydrogen, which is attributed to the strong catalytic activity of ripples in the graphene sheet.

    • P. Z. Sun
    • , Q. Yang
    •  & A. K. Geim
  • Article |

    A two-dimensional semiconductor photodiode array senses and processes optical images simultaneously without latency, and is trained to classify and encode images with high throughput, acting as an artificial neural network.

    • Lukas Mennel
    • , Joanna Symonowicz
    •  & Thomas Mueller
  • Article |

    A universal mechanical exfoliation method of creating freestanding membranes of complex-oxide materials with different crystal structures and orientations and stacking them to produce a range of artificial heterostructures with hybridized physical properties is described.

    • Hyun S. Kum
    • , Hyungwoo Lee
    •  & Jeehwan Kim
  • Article |

    Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.

    • Duy X. Luong
    • , Ksenia V. Bets
    •  & James M. Tour
  • Article |

    A growth process in which protons decouple graphene from the underlying substrate greatly reduces the number of wrinkles that usually degrade large graphene films grown by chemical vapour deposition.

    • Guowen Yuan
    • , Dongjing Lin
    •  & Libo Gao
  • Article |

    The emergence of a liquid-like electronic flow from ballistic flow in graphene is imaged, and an almost-ideal viscous hydrodynamic fluid of electrons exhibiting a parabolic Poiseuille flow profile is observed.

    • Joseph A. Sulpizio
    • , Lior Ella
    •  & Shahal Ilani