Excited states articles within Nature Communications

Featured

  • Article
    | Open Access

    The authors demonstrate that the band structure of graphene nanoribbons is modulated by cove edges, brightening the luminescence 4-fold via emission from otherwise dark twilight states. High spectral resolution of the optical response reveals strong vibron-electron coupling

    • Bernd K. Sturdza
    • , Fanmiao Kong
    •  & Robin J. Nicholas
  • Article
    | Open Access

    Malakar et al. investigate the photochemical dynamics in the isomerization of bacteriorhodopsin light and dark-adapted forms and in the first photocycle intermediate, K. The results prompt a reevaluation of the counter ion model, revealing that a different protonation then that shown in the classic quadrupole so far considered must be employed to account for the experimental data.

    • Partha Malakar
    • , Samira Gholami
    •  & Sanford Ruhman
  • Article
    | Open Access

    Understanding excitonic optical excitations is integral to improving optoelectronic and photovoltaic semiconductor devices. Here, Bennecke et al. use photoemission exciton tomography to unravel the multiorbital electron and hole contributions of entangled excitonic states in the prototypical organic semiconductor C60.

    • Wiebke Bennecke
    • , Andreas Windischbacher
    •  & Stefan Mathias
  • Article
    | Open Access

    Photoredox catalysis is an important approach for synthesizing fine chemicals from olefins, but the limited lifetime of radical cation intermediates severely restricts the efficiency. Here, the authors report that Ag3PO4 can efficiently catalyze intramolecular and intermolecular [2 + 2] and Diels–Alder cycloadditions under visible-light irradiation.

    • Lirong Guo
    • , Rongchen Chu
    •  & Yifeng Wang
  • Article
    | Open Access

    Previous theoretical interpretations of the Rydberg spectra of dimethylpiperazine (DMP) debated the existence of a localized minimum on the surface of the DMP+ cation. Here, the authors show a substantial influence of the Rydberg electron on the molecular structure, restoring the localized minimum.

    • Marc Reimann
    • , Christoph Kirsch
    •  & Martin Kaupp
  • Article
    | Open Access

    The impact of multiexcitonic through-space interactions in macromolecular architectures is poorly investigated. Here the authors use dendritic macromolecules to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation.

    • Guiying He
    • , Emily M. Churchill
    •  & Luis M. Campos
  • Article
    | Open Access

    Capturing the detailed structural evolution of electronic excited states is a challenging but critical step to understand and control ultrafast molecular dynamics. Here, combining a Coulomb explosion imaging approach and molecular dynamics simulations, the authors retrieve the transient geometry of the ground and excited states of D2O mono- and dication with few femtosecond, few picometre accuracy.

    • Zhenzhen Wang
    • , Xiaoqing Hu
    •  & Dajun Ding
  • Article
    | Open Access

    Valleytronics is a portmanteau of ‘valley’ and ‘electronics’ and refers to the use of the valley degree of freedom, present in some materials, for encoding and processing information. Here, Shrestha et al demonstrate a room temperature valley polarization in heterostructures composed of molybdenum disulfide and a chiral lead halide perovskite, an important step in development of valleytronics.

    • Shreetu Shrestha
    • , Mingxing Li
    •  & Mircea Cotlet
  • Article
    | Open Access

    Neutral π-radicals are potential emitters for optoelectronic devices due to the absence of energetically low-lying non-emissive states. Here, the authors report mesityl-substituted tris(2,4,6-trichlorophenyl)methyl radicals and achieve maximum device efficiency of 28% at a wavelength of 689 nm.

    • Petri Murto
    • , Rituparno Chowdhury
    •  & Hugo Bronstein
  • Article
    | Open Access

    Proximity effect (PE) can impact the behaviour of heterocyclic luminogens, but is rarely used to manipulate the aggregation-induced emission (AIE) related properties. Here, the authors systematically illustrate the impacts of PE and AIE on luminescent behaviors.

    • Jianyu Zhang
    • , Yujie Tu
    •  & Ben Zhong Tang
  • Article
    | Open Access

    Pump-probe spectroscopy is routinely used to interrogate ultrafast valence electronic and vibrational dynamics in complex systems. Here, the authors extend this technique to the X-ray regime using a sequence of femtosecond X-ray pulses to understand core-valence interactions in a solvated molecular complex.

    • Robert B. Weakly
    • , Chelsea E. Liekhus-Schmaltz
    •  & Munira Khalil
  • Article
    | Open Access

    The mixing between Frenkel and charge-transfer characters in molecular excitons is difficult to analyze. Here, the authors demonstrate the onset and evolution of the mixing using 2D perylene molecular crystals by measuring the reorientation of emission transition dipoles with varying thicknesses.

    • Dogyeong Kim
    • , Sol Lee
    •  & Sunmin Ryu
  • Article
    | Open Access

    Electron screening is crucial to interpret inelastic X-ray scattering experiments in materials. Here the authors use a combined analysis based on the Bethe-Salpeter equation and time-dependent density functional theory to calculate the dielectric function and obtain the band gap of liquid water.

    • Igor Reshetnyak
    • , Arnaud Lorin
    •  & Alfredo Pasquarello
  • Article
    | Open Access

    Reliably identifying transient intermediates is crucial to elucidate chemical reaction mechanisms. Here, the authors use femtosecond Fe Kβ main line and valence-to-core x-ray emission spectroscopy to characterize a short-lived intermediate of the aqueous ferricyanide photo-aquation reaction.

    • Marco Reinhard
    • , Alessandro Gallo
    •  & Dimosthenis Sokaras
  • Article
    | Open Access

    Perylene bisimide dyes are high-performance pigments that have red, maroon or black colors, but with typically only weak fluorescence in the solid state. Here, the authors report a series of π-stacked PBI derivatives that show highly efficient deep-red fluorescence in the solid state.

    • Ningning Tang
    • , Jiadong Zhou
    •  & Zengqi Xie
  • Article
    | Open Access

    Singlet fission (SF) can create spin-polarized quintet states in organic systems, but this effect and its potential applications have not been sufficiently explored. Here, authors demonstrate that SF in supramolecular assemblies of pentacene chromophores improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization in a water-glycerol glass.

    • Yusuke Kawashima
    • , Tomoyuki Hamachi
    •  & Nobuhiro Yanai
  • Article
    | Open Access

    Deep neural networks can learn and represent nearly exact electronic ground states. Here, the authors advance this approach to excited states, achieving high accuracy across a range of atoms and molecules, opening up the possibility to model many excited-state processes.

    • M. T. Entwistle
    • , Z. Schätzle
    •  & F. Noé
  • Article
    | Open Access

    Exciton-polaritons are hybridized light-matter states that exhibit intriguing phenomena that are unobserved in purely excitonic states. Here, the authors elucidate the photophysical mechanism of polariton-assisted long-range energy transfer in carbon nanotubes using two-dimensional white-light spectroscopy and quantum calculations.

    • Minjung Son
    • , Zachary T. Armstrong
    •  & Martin T. Zanni
  • Article
    | Open Access

    Density functional theory provides a formal map from the electron density to all observables of interest of a many-body system; however, maps for electronic excited states are unknown. Here, the authors demonstrate a data-driven machine learning approach for constructing multistate functionals.

    • Yuanming Bai
    • , Leslie Vogt-Maranto
    •  & William J. Glover
  • Article
    | Open Access

    Fluorescent proteins that self-assemble and localize in the neuron membrane are vital in neurosciences, particularly in optogenetics applications. Here the authors present a quantum-mechanics/molecular mechanics model for the photoisomerization of the natural highly fluorescent Neorhodopsin, explaining the highly fluorescent quantum yield that could lead to effective visualization of neural signals.

    • Riccardo Palombo
    • , Leonardo Barneschi
    •  & Massimo Olivucci
  • Article
    | Open Access

    Improving the efficiency of light-driven molecular rotary motors is a challenging task. Here, the authors combine theoretical modeling, synthesis and spectroscopy to prepare a prototype molecular motor capable of avoiding inefficient thermally activated motion; thus offering prospects to implement a 2-stroke photon-only molecular motor.

    • Michael Filatov(Gulak)
    • , Marco Paolino
    •  & Massimo Olivucci
  • Article
    | Open Access

    Arch-3 rhodopsin variants are common fluorescent reporters of neuronal activity. Here, the authors show with quantum chemical modelling that a set of these proteins reveals a direct proportionality between their observed fluorescence intensity and the stability of an exotic excited-state diradical intermediate.

    • Leonardo Barneschi
    • , Emanuele Marsili
    •  & Massimo Olivucci
  • Article
    | Open Access

    Ultrafast action spectroscopies of organic optoelectronic devices reveal that the formation of bound exciton state occurs as fast as 10 fs. Excitons having excess energy can dissociate spontaneously within 50-fs before acquiring bound character.

    • Marios Maimaris
    • , Allan J. Pettipher
    •  & Artem A. Bakulin
  • Article
    | Open Access

    Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.

    • Yongseok Hong
    • , Maximilian Rudolf
    •  & Frank Würthner
  • Article
    | Open Access

    Chemical functionalization of the sidewalls of single-wall carbon nanotubes (SWCNTs) is an emerging route to introduce fluorescent quantum defects and tailor the emission properties. Here, authors demonstrate that spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.

    • Yu Zheng
    • , Yulun Han
    •  & Sergei Tretiak
  • Article
    | Open Access

    Although mature and systematic theories of molecular photophysics have been developed, it is still challenging to endow clusteroluminogens (CLgens) with designed photophysical properties by manipulating through-space interactions. Here, the authors design three CLgens that show multiple emissions and white-light emission in the crystalline state, and emphasize the important role of secondary through-space interactions between the acceptor and non-conjugated donor units.

    • Jianyu Zhang
    • , Parvej Alam
    •  & Ben Zhong Tang
  • Article
    | Open Access

    Nitrenium ions are highly electrophilic reactive intermediates of formula R−N−R+, nitrogen analogue of carbenes. Here the authors report the detection of a triplet nitrenium ion using time-resolved spectroscopic methods and ab initio computations, allowing a glimpse at the properties and behavior of this important class of intermediates.

    • Lili Du
    • , Juanjuan Wang
    •  & Arthur H. Winter
  • Article
    | Open Access

    The endoperoxides of β-carotene play a key role in signaling of photooxidative stress in plant cells and are regarded as the products of chemical deactivation of singlet oxygen. The authors show that these compounds are instead formed in a reaction between oxygen and β-carotene in their triplet states, revealing the importance of the triplet states in the photoprotection of photosynthetic apparatus.

    • Mateusz Zbyradowski
    • , Mariusz Duda
    •  & Leszek Fiedor
  • Article
    | Open Access

    The authors report non-adiabatic first principles molecular dynamics to show how an achiral molecule can be converted to a chiral one upon photoexcitation. These results demonstrate the possibility of asymmetric photochemistry starting from achiral reactants.

    • Umberto Raucci
    • , Hayley Weir
    •  & Todd J. Martínez
  • Article
    | Open Access

    Helically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices but the design of nanocarbons with an absorption edge in the low energy region is challenging. Here, the authors report the synthesis of a helically fused oligophenanthrenes and demonstrate an increased effective conjugation length leading to an absorption edge in the NIR region.

    • Yusuke Nakakuki
    • , Takashi Hirose
    •  & Kenji Matsuda
  • Article
    | Open Access

    Pyruvic acid and its conjugate base, the pyruvate anion, are largely present in the atmosphere. Here the authors, using photoelectron imaging and quantum chemistry calculations, investigate the photochemistry of isolated pyruvate anions initiated by UVA radiation and report the formation of CO2, CO, and CH3 further decomposing into CH3 and a free electron.

    • Connor J. Clarke
    • , Jemma A. Gibbard
    •  & Basile F. E. Curchod
  • Article
    | Open Access

    The internal Stark effect, a shift of the spectral lines of a chromophore induced by electrostatic fields in its close environment, plays an important role in nature. Here the authors observe a Stark shift in the fluorescence spectrum of a phthalocyanine molecule upon charge modifications within the molecule itself, achieved by sequential removal of the central protons with a STM tip.

    • Kirill Vasilev
    • , Benjamin Doppagne
    •  & Guillaume Schull
  • Article
    | Open Access

    The electronic structures of photoactive proteins underlie many natural photoinduced processes. The authors, using UV liquid-microjet photoelectron spectroscopy and quantum chemistry calculations, determine electron detachment energies of the green fluorescent protein chromophore in aqueous solution, approaching conditions of the protein environment.

    • Omri Tau
    • , Alice Henley
    •  & Helen H. Fielding
  • Article
    | Open Access

    The photophysical mechanism by which nucleosides dissipate energy after UV light irradiation is still under debate. Here the authors, using ultrafast time resolved optical spectroscopies and quantum chemical computations, resolve the early steps of such mechanism in uridine and 5-methyluridine in aqueous solution.

    • Rocío Borrego-Varillas
    • , Artur Nenov
    •  & Giulio Cerullo
  • Article
    | Open Access

    The ponderomotive effect experienced by electrons in a molecule under a transient electric field impacts the reactivity, but has been difficult to detect. The authors observe a ponderomotive force on the excess quasi-free electron in the non-valence bound state of three molecular anions, by measuring the photodetachment spectrum under irradiation with a non-resonant wavelength.

    • Do Hyung Kang
    • , Jinwoo Kim
    •  & Sang Kyu Kim
  • Article
    | Open Access

    Understanding the source of vibrationally excited molecular hydrogen is an essential prerequisite for understanding the chemical evolution in the universe. Here the authors report a photodissociation pathway to produce vibrationally excited H2 via the water photochemistry.

    • Yao Chang
    • , Feng An
    •  & Xueming Yang
  • Article
    | Open Access

    Commonly, large π-conjugated systems facilitate low-energy electronic transitions. Here, the authors demonstrate that the relief of excited-state antiaromaticity of the benzene core leads to large Stokes shifts, and allows the construction of emitters covering the entire visible spectrum without the need of extending π-conjugation.

    • Heechan Kim
    • , Woojin Park
    •  & Dongwhan Lee
  • Article
    | Open Access

    A complete understanding of singlet fission (SF) in molecular materials will enable the design of optimised optoelectronic devices. Here, the authors use vacancy control in acene-based blends to link coherent and incoherent SF pathways to energetics.

    • Clemens Zeiser
    • , Chad Cruz
    •  & Katharina Broch
  • Article
    | Open Access

    Radiationless relaxation is ubiquitous in natural processes and often involves excited states that are difficult to observe. Here the authors, combining X-ray transient absorption spectroscopy and computations, provide insight into the photoinduced dynamics in pyrazine and the involvement of an optically dark 1Au(nπ*) state.

    • Valeriu Scutelnic
    • , Shota Tsuru
    •  & Stephen R. Leone