Element cycles articles within Nature Communications

Featured

  • Article
    | Open Access

    A climate sensitive permafrost region (Yedoma domain) was found to contain globally relevant N stock of >40 Gt nitrogen, of which 4 to 16 Gt of the N could become available by thaw until 2100. This study increases the current estimates by nearly 50%.

    • Jens Strauss
    • , Christina Biasi
    •  & Guido Grosse
  • Article
    | Open Access

    Phosphate is critical for all life on Earth but its origins have remained enigmatic. Experiments indicate that phosphate may have been abundant in ancient Fe-rich seawater, providing a crucial ingredient for the origins of life on Earth.

    • Matthew P. Brady
    • , Rosalie Tostevin
    •  & Nicholas J. Tosca
  • Article
    | Open Access

    Arctic warming thaws permafrost, leading to enhanced soil mercury transport to the Arctic Ocean. Mercury isotope signatures in arctic rivers, ocean and atmosphere suggest that permafrost mercury is buried in marine sediment and not emitted to the global atmosphere

    • Beatriz Ferreira Araujo
    • , Stefan Osterwalder
    •  & Jeroen E. Sonke
  • Article
    | Open Access

    The roles of marine plastisphere in global nitrogen cycling are largely unknown. Here, the authors indicate that the plastisphere could act as a potential source of N2O production, which is mainly regulated by the biotic denitrification

    • Xiaoxuan Su
    • , Leyang Yang
    •  & Yong-guan Zhu
  • Article
    | Open Access

    How Earth’s atmosphere became oxygenated remains enigmatic. Here the authors use mathematical and phylogenetic analyses to find that Earth’s oxygenation is induced by the interactions of microbial oxidative metabolites with sediment minerals.

    • Haitao Shang
    • , Daniel H. Rothman
    •  & Gregory P. Fournier
  • Article
    | Open Access

    River networks play an important role in biogeochemical processes of the earth system. Here the authors show that cumulative river network function increases faster than watershed size for many biogeochemical processes, particularly at higher river flow, indicating large rivers contribute disproportionately to network function in the Earth System.

    • Wilfred M. Wollheim
    • , Tamara K. Harms
    •  & Jacques C. Finlay
  • Article
    | Open Access

    A study using paired 15N tracers shows atmospheric N deposited in oxidized form is more likely retained by trees, while the reduced form is retained in soil. The authors argue that this is a greater contribution of deposited N to the global forest C sink than previously reported.

    • Geshere Abdisa Gurmesa
    • , Ang Wang
    •  & Yunting Fang
  • Article
    | Open Access

    The Congo Basin is home to the second largest stretch of continuous tropical forest, but the magnitude of greenhouse fluxes are poorly understood. Here the authors analyze gas samples and find the region is not actually a hotspot of N2O emissions.

    • Matti Barthel
    • , Marijn Bauters
    •  & Johan Six
  • Article
    | Open Access

    During permafrost thaw, nitrogen can be released as the greenhouse gas nitrous oxide, but the magnitude of this flux is unknown. Nitrous oxide emissions from ice-rich permafrost deposits are reported here, showing that emissions increase after thawing and stabilization and could represent an unappreciated positive climate feedback in the Arctic.

    • M. E. Marushchak
    • , J. Kerttula
    •  & C. Biasi
  • Article
    | Open Access

    Defoliating insects disrupt nutrient cycling of boreal catchments by redistributing carbon and nitrogen from forests to lakes. The resulting shift in lake biogeochemistry exceeds broader between-year trends observed across the boreal and north temperate region.

    • Samuel G. Woodman
    • , Sacha Khoury
    •  & Andrew J. Tanentzap
  • Article
    | Open Access

    The Antarctic ozone hole has had far-reaching impacts, but effects on geochemical cycles in polar regions is still unknown. Iodine records from the interior of Antarctica provide evidence for human alteration of the natural geochemical cycle of this essential element.

    • Andrea Spolaor
    • , François Burgay
    •  & Alfonso Saiz-Lopez
  • Article
    | Open Access

    Nowhere is biomass burning more abundant than on the African continent, but the biogeochemical impacts on forests are poorly understood. Here the authors show that biomass burning leads to high phosphorus deposition in the Congo basin, which scales with forest age as a result of increasing canopy complexity.

    • Marijn Bauters
    • , Travis W. Drake
    •  & Pascal Boeckx
  • Article
    | Open Access

    N2 fixation was key to the expansion of life on Earth, but which organisms fixed N2 and if Mo-nitrogenase was functional in the low Mo early ocean is unknown. Here, the authors show that purple sulfur bacteria fix N2 using Mo-nitrogenase in a Proterozoic ocean analogue, despite low Mo conditions.

    • Miriam Philippi
    • , Katharina Kitzinger
    •  & Marcel M. M. Kuypers
  • Article
    | Open Access

    Here the authors show that 2-aminoethylphosphonate (2AEP) mineralisation is widespread in the global ocean, operating independently of exogenous inorganic phosphate concentration. They propose 2AEP may be a major route for the regeneration of phosphate required to support marine primary production.

    • Andrew R. J. Murphy
    • , David J. Scanlan
    •  & Ian D. E. A. Lidbury
  • Article
    | Open Access

    Plant and soil C:N:P ratios are critical to ecosystem functioning, but it remains uncertain how plant diversity affects terrestrial C:N:P. In this meta-analysis of 169 studies, the authors find that plant mixtures can balance plant and soil C:N:P ratios according to background soil C:N:P.

    • Xinli Chen
    •  & Han Y. H. Chen
  • Article
    | Open Access

    Relationships between biodiversity and phosphorus cycling and the underlying processes are complex. Here the authors analyse a biodiversity manipulation experiment and an agricultural management gradient to show how plant and mycorrhizal fungal diversity promote phosphorus exploitation.

    • Yvonne Oelmann
    • , Markus Lange
    •  & Wolfgang Wilcke
  • Article
    | Open Access

    Nitrogen fixation by diazotrophs is critical for marine primary production. Using Tara Oceans datasets, this study combines a quantitative image analysis pipeline with metagenomic mining to provide an improved global overview of diazotroph abundance, diversity and distribution.

    • Juan José Pierella Karlusich
    • , Eric Pelletier
    •  & Rachel A. Foster
  • Article
    | Open Access

    N2 fixation by heterotrophic bacteria has recently been found to take place on sinking marine particles, but an understanding of its regulation and importance is lacking. Here the authors develop a trait-based model for this N2 fixation, finding that this once overlooked process could have global importance.

    • Subhendu Chakraborty
    • , Ken H. Andersen
    •  & Lasse Riemann
  • Article
    | Open Access

    Some bacteriophage encode auxiliary metabolic genes (AMGs) that impact host metabolism and biogeochemical cycling during infection. Here the authors identify hundreds of AMGs in environmental phage encoding sulfur oxidation genes and use their global distribution to infer phage-mediated biogeochemical impacts.

    • Kristopher Kieft
    • , Zhichao Zhou
    •  & Karthik Anantharaman
  • Article
    | Open Access

    Primary productivity in the oligotrophic ocean sustains Earth’s ecosystems, but nutrient concentrations are vanishingly low. Here the authors measure nanomolar macronutrient concentrations in the North Pacific and find that net community production is sustained through high rates of phosphorus recycling.

    • Fuminori Hashihama
    • , Ichiro Yasuda
    •  & Masao Ishii
  • Article
    | Open Access

    The middle of the Gulf of Mexico is stratified and highly oligotrophic, yet there are anomalously high fluxes of sinking particulate matter from the euphotic zone. Here the authors show that lateral advection of organic matter supports nitrogen export in the Gulf of Mexico’s open ocean.

    • Thomas B. Kelly
    • , Angela N. Knapp
    •  & Michael R. Stukel
  • Article
    | Open Access

    Up to 40% of the ocean’s fixed nitrogen is lost in oxygen minimum zones (OMZs) by anammox, but despite the importance of this process, nitrogen loss patterns in OMZs are difficult to predict. Here the authors show that ammonium release from small particles is a major control of anammox in the Peruvian OMZ.

    • Clarissa Karthäuser
    • , Soeren Ahmerkamp
    •  & Marcel M. M. Kuypers
  • Article
    | Open Access

    Mercury is a neurotoxin and pollutant with enhanced emissions from anthropogenic activities. Here, the authors develop a global emissions, transport, and human risk model and find substantial future losses in revenue and public health if emission reductions proposed by the Minamata Convention are delayed.

    • Yanxu Zhang
    • , Zhengcheng Song
    •  & Ping Li
  • Article
    | Open Access

    The macroalgae Sargassum has grown for centuries in the oligotrophic North Atlantic supported by natural nutrient sources and cycling. Here the authors show that changes in tissue nutrient contents since the 1980s reflect global anthropogenic nitrogen enrichment, causing blooms in the wider Atlantic basin.

    • B. E. Lapointe
    • , R. A. Brewton
    •  & P. L. Morton
  • Article
    | Open Access

    A large fraction of ice sheet discharge enters the ocean subsurface from underneath large floating ice-tongues. Here the authors show that associated nutrient export may be governed by shelf circulation and, especially for Fe, particle-dissolved phase exchanges, which is largely independent from freshwater Fe content.

    • Stephan Krisch
    • , Mark James Hopwood
    •  & Eric Pieter Achterberg
  • Article
    | Open Access

    Expanded phosphorus availability possibly triggered a marine bioproduction boom after 2.3 billion years ago, but its delivery mechanisms remain unclear. Here we propose a kaolinite shuttle which efficiently adsorbs phosphorus in continental weathering settings and releases it under marine conditions.

    • Weiduo Hao
    • , Kaarel Mänd
    •  & Kurt O. Konhauser
  • Article
    | Open Access

    Microplastic pollution is a major threat to marine food webs, but the wider ranging impacts on global ocean biogeochemistry are poorly understood. Here the authors use an Earth system model to determine that zooplankton grazing on microplastics could exacerbate trends in ocean oxygen loss.

    • K. Kvale
    • , A. E. F. Prowe
    •  & A. Oschlies
  • Article
    | Open Access

    Ocean warming and changing circulation as a result of climate change are driving down oxygen levels and threatening ecosystems. Here the author shows that though immediate cessation of anthropogenic CO2 emissions would halt upper ocean oxygen loss, it would continue in the deep ocean for 100 s of years.

    • Andreas Oschlies
  • Article
    | Open Access

    Radioactive 137Cs is a fission product remaining in the environment from mid-20th century nuclear testing. Here the authors show that vegetation thousands of kilometers from testing sites continues to cycle 137Cs, and consequently, bees magnify this contaminant in honey in regions with low soil potassium.

    • J. M. Kaste
    • , P. Volante
    •  & A. J. Elmore
  • Article
    | Open Access

    Determining the origins of life on Earth is confounded by the fact that the sources of nutrients necessary to create early life forms remain mysterious. Here the authors show that lightning strikes could have supplied a major source of essential phosphorus on early Earth.

    • Benjamin L. Hess
    • , Sandra Piazolo
    •  & Jason Harvey
  • Article
    | Open Access

    The impacts of a melting Arctic on the biogeochemistry of marine ecosystems are unknown. Here, the authors investigate glacial input of iron to Svalbard fjords finding that reworking of glacial iron in fjord sediment is important to make iron bioavailable, but could be susceptible to glacial retreat.

    • Katja Laufer-Meiser
    • , Alexander B. Michaud
    •  & Bo Barker Jørgensen
  • Article
    | Open Access

    The deglaciation of Marinoan snowball Earth (~635 Myr ago) has been associated with potentially extensive CH4 emissions in relation to transient marine euxinia. Here, the authors find that active methanogenesis occurred during the termination of Marinoan snowball Earth, fueled by methyl sulfide production in sulfidic seawater.

    • Zhouqiao Zhao
    • , Bing Shen
    •  & Haoran Ma
  • Article
    | Open Access

    Southern Ocean productivity is a crucial component of the carbon cycle, but phytoplankton there are thought to be limited by iron. Here the authors conduct trace metal incubation experiments across the Drake Passage, finding that manganese can play an unexpected role in restricting phytoplankton growth.

    • Thomas J. Browning
    • , Eric P. Achterberg
    •  & Edward Mawji
  • Article
    | Open Access

    Enigmatic blooms of phytoplankton in aquatic oxygen-deficient zones could exacerbate depletion of nitrogen. Here the authors perform stable isotope experiments on the oxygen-deficient waters of Lake Tanganyika in Africa, finding that blooms drive down fixed nitrogen and could expand as a result of climate change.

    • Cameron M. Callbeck
    • , Benedikt Ehrenfels
    •  & Carsten J. Schubert
  • Article
    | Open Access

    Melting of the Greenland Ice Sheet—a threat for sea level rise—is accelerated by ice algal blooms. Here the authors find a link between mineral phosphorus and glacier algae, indicating that dust-derived nutrients aid bloom development, thereby impacting ice sheet melting.

    • Jenine McCutcheon
    • , Stefanie Lutz
    •  & Liane G. Benning
  • Article
    | Open Access

    The expansion of oceanic anoxia during the Paleocene Eocene Thermal Maximum has important implications for faunal turnover patterns and global biogeochemical cycles. Here the authors use uranium isotopes and a biogeochemical model to suggest that the areal expansion of anoxia must have been limited to 10-fold.

    • Matthew O. Clarkson
    • , Timothy M. Lenton
    •  & Derek Vance
  • Article
    | Open Access

    Constraining the rise in atmospheric oxygen through the early Earth is important to understand the evolution of complex life. Here, the authors find that a major rise in atmospheric oxygen level occurred after the Great Oxidation Event, followed by pO2 within 1% of present atmospheric level through most of the Proterozoic Eon (2.4 to 0.65 Ga).

    • Xiao-Ming Liu
    • , Linda C. Kah
    •  & Robert M. Hazen