Electronics, photonics and device physics

  • Article
    | Open Access

    Resistive switching usually occurs by the formation of conducting filaments in the direction of current flow. Here the authors study an intriguing type of volatile metal-to-insulator resistive switching in (La,Sr)MnO3, which occurs by the formation of an insulating barrier perpendicular to the current.

    • Pavel Salev
    • , Lorenzo Fratino
    •  & Ivan K. Schuller
  • Article
    | Open Access

    The development of fast and dynamic topological photonic platforms is an ongoing challenge. Here, the authors demonstrate a reprogrammable plasmonic topological insulator in which ultrafast electric switches allow for nanosecond-level switching time between different configurations.

    • Jian Wei You
    • , Qian Ma
    •  & Tie Jun Cui
  • Article
    | Open Access

    Conventional DC-DC converters rely on switching operations and energy storing components which face both noise and scaling difficulties. Here, the authors present an alternative design for a DC-to-DC converter based on closely coupled LEDs and photovoltaic cells, which exhibits high efficiency, low noise, and miniaturizability.

    • Bo Zhao
    • , Sid Assawaworrarit
    •  & Shanhui Fan
  • Article
    | Open Access

    Semiconductor surface states often stand in the way of device performance, but here, the authors take advantage of them for wavelength conversion. They present a compact, passive conversion device insensitive to optical alignment by using plasmon-coupled surface states that enable the efficient conversion without nonlinear phenomena.

    • Deniz Turan
    • , Ping Keng Lu
    •  & Mona Jarrahi
  • Article
    | Open Access

    Switching of ferrimagnets by current-induced spin-orbit torque is promising for spintronics, due to their high-speed dynamics and small macroscopic magnetization. Switching of perpendicularly magnetized materials, however, requires a bias field for symmetry breaking. Here, Zheng et al demonstrate field-free current-induced switching of perpendicular ferrimagnets, using a compositional gradient-driven Dzyaloshinskii–Moriya interaction.

    • Zhenyi Zheng
    • , Yue Zhang
    •  & Pedram Khalili Amiri
  • Article
    | Open Access

    Coherent conversion between optical and microwave photonics is needed for future quantum applications. Here, the authors combine thin-film lithium niobate and superconductor platforms as a hybrid electro-optic system to achieve high-efficiency frequency conversion between microwave and optical modes.

    • Yuntao Xu
    • , Ayed Al Sayem
    •  & Hong X. Tang
  • Article
    | Open Access

    Photonics-based radars offer intriguing potential but face tradeoffs in tunability, complexity, and noise. Here the authors present microwave generation in a photonics platform by heterodyning of two low-noise, self-injection-locked lasers, and demonstrate its advantages in an FMCW radar system.

    • Eric A. Kittlaus
    • , Danny Eliyahu
    •  & Siamak Forouhar
  • Article
    | Open Access

    Strong nonlinearities, like high harmonic generation in optical systems, can lead to interesting applications in photonics. Here the authors fabricate a thin resonant gallium phosphide metasurface capable of avoiding the laser-induced damage and demonstrate efficient even and odd high harmonic generation from it when driven by mid-infrared laser pulses.

    • Maxim R. Shcherbakov
    • , Haizhong Zhang
    •  & Gennady Shvets
  • Article
    | Open Access

    Anti-ferromagnetic based memories have a wide range of advantages over their ferromagnetic counterparts, however, their electrical signatures of switching are complicated by spurious signals. Here, Arpaci et al demonstrate an experimental method to distinguish between anti-ferromagnetic switching, and such spurious signatures.

    • Sevdenur Arpaci
    • , Victor Lopez-Dominguez
    •  & Pedram Khalili Amiri
  • Article
    | Open Access

    Energy harvesting devices based on micro-electromechanisms (MEMS) is attractive for sustainable energy applications. Here, the authors report the theoretical working principle of a lightweight, low-voltage AC-current generating MEMS-based capacitive rotor device for Watts-level power generation from everyday walking.

    • Ehud Haimov
    • , Aidan Chapman
    •  & Alexei A. Kornyshev
  • Article
    | Open Access

    In molecular junctions, where a molecule is placed between two electrodes, the current passed decays exponentially as a function of length. Here, Chen et al. show that this exponentially attenuation can be controlled by changing a single atom at the end of the molecular wire.

    • Xiaoping Chen
    • , Bernhard Kretz
    •  & Christian A. Nijhuis
  • Article
    | Open Access

    Wireless implantable medical devices (IMDs) are hamstrung by both size and efficiency required for wireless power transfer. Here, Zaeimbashi et al. present a magnetoelectric nano-electromechanical systems that can harvest energy and sense weak magnetic fields like those arising from neural activity.

    • Mohsen Zaeimbashi
    • , Mehdi Nasrollahpour
    •  & Nian X. Sun
  • Article
    | Open Access

    Background radiation has been identified as a key factor limiting the coherence times of superconducting circuits. Here, the authors measure the impact of environmental and cosmic radiation on a superconducting resonator with varying degrees of shielding, including an underground facility.

    • L. Cardani
    • , F. Valenti
    •  & I. M. Pop
  • Article
    | Open Access

    The Gauge factor (GF) enhancement in strain sensors remains a key challenge. Here the authors leverage the piezoelectric and photoelectric effects in a class of van der Waals materials to tune the GF, and obtain a record GF up to 3933 for a SnS2-based strain sensor.

    • Wenjie Yan
    • , Huei-Ru Fuh
    •  & Han-Chun Wu
  • Article
    | Open Access

    Exploiting delocalized organic polaritons for enhanced exciton harvesting has been advantageous for organic optoelectronic with planar heterojunctions. Here, the authors report polariton-assisted excitation energy channeling in organic heterojunctions coupled to the same cavity mode.

    • Mao Wang
    • , Manuel Hertzog
    •  & Karl Börjesson
  • Article
    | Open Access

    High-frequency rectifiers at terahertz regime are pivotal components in modern communication, whereas the drawbacks in semiconductor junctions-based devices inhibit their usages. Here, the authors report electromagnetic rectification with high signal-to-noise ratio driven by chiral Bloch-electrons in type-II Dirac semimetal NiTe2-based device allowing for efficient THz detection.

    • Libo Zhang
    • , Zhiqingzi Chen
    •  & Wei Lu
  • Article
    | Open Access

    Perovskite single crystals are commonly grown in organic solvents, which require relatively high temperature condition. Here, the authors develop a low-temperature crystallisation strategy to grow CsPbBr3 single crystals in water with improved charge transport properties and stability.

    • Jiali Peng
    • , Chelsea Q. Xia
    •  & Qianqian Lin
  • Article
    | Open Access

    Designing efficient light-emitting diodes with white-light-emission from broadband-emission metal halides remains a challenge. Here, the authors demonstrate bright and efficient lead-free LEDs based on cesium copper halides enabled by introducing Tween organic additive in the precursor.

    • Hong Chen
    • , Lin Zhu
    •  & Jianpu Wang
  • Article
    | Open Access

    A recent finding of tuning critical current in metallic nanowires by application of small gate voltages seems at odds with general understanding. Here, Ritter et al. study similar nanowires and link the origin of the critical current suppression to tunneling of few high-energy electrons between gate and nanowire, ruling out direct tuning by electric fields.

    • M. F. Ritter
    • , A. Fuhrer
    •  & F. Nichele
  • Article
    | Open Access

    Human-like robotic sensing aims at extracting and processing complicated environmental information via multisensory integration and interaction. Tan et al. report an artificial spiking multisensory neural network that integrates five primary senses and mimics the crossmodal perception of biological brains.

    • Hongwei Tan
    • , Yifan Zhou
    •  & Sebastiaan van Dijken
  • Article
    | Open Access

    Measuring real time magnetization dynamics resulting from Hall effects is hard due to the small signal size. Here Sala et al demonstrate a method of performing Hall resistance measurements with sub-ns resolution, and use it to investigate the switching of GdFeCo dots induced by spin-orbit torques.

    • G. Sala
    • , V. Krizakova
    •  & P. Gambardella
  • Article
    | Open Access

    Goto et al present a bolometer based around the heat generation in magnetic tunnel junctions under auto-oscillation conditions. Unlike superconducting bolometers, the presented device operates at room temperature and sub-GHz frequencies, opening possibilities for use in microwave devices.

    • Minori Goto
    • , Yuma Yamada
    •  & Yoshishige Suzuki
  • Article
    | Open Access

    The suppression of dark current in organic photodetectors (OPDs) is important for maximizing the performance of the devices. Here, the authors report the relationship between the high dark saturation current and the presence of mid-gap trap states in OPDs with a donor–acceptor structure.

    • Jonas Kublitski
    • , Andreas Hofacker
    •  & Karl Leo
  • Article
    | Open Access

    Most demonstrations of optical neural networks for computing have been so far limited to real-valued frameworks. Here, the authors implement complex-valued operations in an optical neural chip that integrates input preparation, weight multiplication and output generation within a single device.

    • H. Zhang
    • , M. Gu
    •  & A. Q. Liu
  • Article
    | Open Access

    Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors present 1 Gb phase change memory memristor array with a spontaneous sparse learning scheme able to leverage the resistance drift issue improving the classification accuracy on MNIST handwritten digit dataset.

    • Dong-Hyeok Lim
    • , Shuang Wu
    •  & Luping Shi
  • Article
    | Open Access

    Operating donor-based quantum computers in silicon is hindered by the dependence of inter-qubit coupling on the precise donor position. Here, the authors show controlled rotation operation on exchange-coupled electron spins in the weak-exchange regime, loosening the requirements on positioning precision.

    • Mateusz T. Ma̧dzik
    • , Arne Laucht
    •  & Andrea Morello
  • Article
    | Open Access

    Thermoelectricity due to the interplay of the nonlocal Cooper pair splitting and the elastic co-tunneling in normal metal-superconductor-normal metal structure is predicted. Here, the authors observe the non-local Seebeck effect in a graphene-based Cooper pair splitting device.

    • Z. B. Tan
    • , A. Laitinen
    •  & P. J. Hakonen
  • Article
    | Open Access

    Hitherto, only circularly polarized antiferromagnetic (AFM) spin-waves (SWs) were expected to convey spin-information. Here, the authors present persistent spin-transport over long distances in the easy-plane AFM phase of hematite, α-Fe2O3, via linearly polarized SW pairs with ultra-low damping.

    • R. Lebrun
    • , A. Ross
    •  & M. Kläui
  • Article
    | Open Access

    Typically, Boolean logic gates have to compromise between high speed and low energy consumption which can become limiting at scale. Here, the authors demonstrate architectures for NOT and XNOR gates that enable simultaneous low power and fast operation.

    • Reza Maram
    • , James van Howe
    •  & José Azaña
  • Article
    | Open Access

    Though reducing non-emissive triplet excited-states using quenchers effectively improves organic semiconductor laser diode (OSLD) performance, existing quenchers are not suitable for devices. Here, the authors designed a solid-state triplet quencher for OSLD under optical and electrical excitation.

    • Van T. N. Mai
    • , Viqar Ahmad
    •  & Shih-Chun Lo
  • Article
    | Open Access

    Tunable quantum cascade lasers can enable applications in multiple areas. Here, the authors demonstrate the adaptive control of the modes and emission spectra of quantum cascade random lasers through a spatially-tailored optical modulation of the active region.

    • S. Schönhuber
    • , N. Bachelard
    •  & K. Unterrainer
  • Article
    | Open Access

    Designing ultra-low-power sensing and data-logging techniques with battery-free operation of sensor nodes remains a challenge. Here, the authors present a self-powered sensor-data-logger device that records a cumulative measure of the sensor signal intensity over its entire duration.

    • Darshit Mehta
    • , Kenji Aono
    •  & Shantanu Chakrabartty
  • Article
    | Open Access

    Typically, phonon trapping is performed using mechanically suspended structures which have many limitations. Here the authors study a phononic structure that supports mechanical bound states in the continuum (BICs) at microwave frequencies with topological features.

    • Hao Tong
    • , Shengyan Liu
    •  & Kejie Fang
  • Article
    | Open Access

    Exploiting low-temperature formed black phase CsPbI3 for light-emitting applications remains a challenge. Here, the authors propose a method to enable the deposition of γ-CsPbI3 films at 100C and demonstrate a light-emitting diode with an external quantum efficiency of 10.4% with suppressed efficiency roll-off.

    • Chang Yi
    • , Chao Liu
    •  & Jianpu Wang
  • Article
    | Open Access

    Direct epitaxial growth of III-V on Si for optical emitters and detectors remains a challenge. Here, the authors demonstrate in-plane monolithic integration of an InGaAs nanostructure p-i-n photodetector on Si capable of high-speed optical data reception at 32 Gbps enabled by a 3 dB bandwidth exceeding 25 GHz.

    • Svenja Mauthe
    • , Yannick Baumgartner
    •  & Kirsten E. Moselund
  • Article
    | Open Access

    Efficient generation of phonons is an important ingredient for a prospective electrically-driven phonon laser for coherent control of quantum systems. Here, the authors report on laser-like phonon emission in a hybrid semiconductor microcavity that optomechanically couples BEC polaritons with phonons.

    • D. L. Chafatinos
    • , A. S. Kuznetsov
    •  & A. Fainstein
  • Article
    | Open Access

    Existing solutions to interface the microwave and optical domains lack either scalability or efficiency. Here, the authors demonstrate a CMOS compatible converter between microwave and optical signals based on silicon an optomechanical device with a total bidirectional transduction efficiency of 1.2% at millikelvin temperatures.

    • G. Arnold
    • , M. Wulf
    •  & J. M. Fink
  • Article
    | Open Access

    Topological phases with knotted configurations in momentum space have been challenging to realize. Here, Lee et al. provide a systematic design and measurement of a three-dimensional knotted nodal structure, and resolve its momentum space drumhead states via a topolectrical RLC-type circuit.

    • Ching Hua Lee
    • , Amanda Sutrisno
    •  & Ronny Thomale
  • Article
    | Open Access

    Quantum heat transport may be realized in superconducting circuits which has to rely on magnetic flux as a sole control parameter. Here, the authors report electric field tuning of photonic thermal conductance and observe heat flow oscillations in a magnetic field-free superconducting circuit.

    • Olivier Maillet
    • , Diego Subero
    •  & Jukka P. Pekola
  • Article
    | Open Access

    Structures that can enhance the capabilities of quantum cascade lasers are highly sought after to improve their practicality for a range of applications. Here the authors demonstrate such a structure in a saturable absorber that takes advantage of intersubband polaritons in the terahertz range and study coherent nonlinear dynamics in the system.

    • Jürgen Raab
    • , Francesco P. Mezzapesa
    •  & Miriam S. Vitiello
  • Article
    | Open Access

    The development of high-performance magnetic field sensors is important for magnetic sensing and imaging. Here, the authors fabricate Hall sensors from graphene encapsulated in hBN and few-layer graphite, demonstrating high performance over a wide range of temperature and background magnetic field.

    • Brian T. Schaefer
    • , Lei Wang
    •  & Katja C. Nowack